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Abstract

Multisensor data fusion is presented in a rigorous mathematical format, with defini-

tions consistent with the desires of the data fusion community. In particular, a model

of event-state fusion is developed and described, concluding that there are two types of

models on which to base fusion (in the literature referred to as within fusion and across

fusion). Six different types of fusion are shown to exist, with respect to the model, us-

ing category theory. Definitions of fusion rules and fusors are introduced, along with

the functor categories, of which they are objects. Defining fusors and competing fu-

sion rules involves the use of an objective function of the researchers choice. One such

objective function, a functional on families of classification systems, and in particular, re-

ceiver operating characteristics (ROCs), is introduced. Its use as an objective function is

demonstrated in that the argument which minimizes it (a particular ROC), corresponds to

the Bayes Optimal threshold, given certain assumptions, within a family of classification

systems. This is proven using a calculus of variations approach using ROC curves as a

constraint. This constraint is extended to ROC manifolds, in particular, topological sub-

spaces ofRn. These optimal points can be found analytically if the closed form of the

ROC manifold is known, or calculated from the functional (as the minimizing argument)

when a finite number of points are available for comparison in a family of classification

systems. Under different data assumptions, the minimizing argument of the ROC func-

tional is shown to be the point of a ROC manifold corresponding to the Neyman-Pearson

criteria. A second functional, thè2 norm, is shown to determine the min-max threshold.

Finally, more robust functionals can be developed from the offered functionals.
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THE APPLICATION OF CATEGORY THEORY AND ANALYSIS

OF RECEIVER OPERATING CHARACTERISTICS TO

INFORMATION FUSION

I. Introduction

1.1 Problem Statement

Data fusion as a science has been rapidly developing since the 1980’s. Fusion liter-

ature encompasses many aspects of data fusion from mathematical techniques [8, 15, 55]

to technologies, how to register and align data, as well as resource management of the

assets to be used. The Joint Directors of Laboratories Data Fusion Subpanel (JDL) has

put out guidance in the form of a functional model (which we will review later). What is

missing? A clear definition of what fusion is in a mathematical sense. While many math-

ematical techniques have been developed and compiled , one look at the spread and variety

of sub-processes such assensorfusion,datafusion, andclassifierfusion (all of which can

be identified by other names) demonstrates the lack of unity within the science. As late

as 2001, the Handbook of Multisensor Data Fusion[15], includes a recommendation that

data fusion be defined as

the process of combining data or information to estimate or predict entity
states.

This is an improvement over the Handbook’s previous version, but what are the mathe-

matical formulations for fusion? How shall we define the technology? For example, does

it matter how data or information are combined? What is meant by data or information?

Does the estimation or prediction of entity states need to conform to some standards of

accuracy or reliability to be called fusion? Are there clear delineations of different types

of fusion or is all fusion the same? How can we mathematically define and compare dif-
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ferences? This dissertation will explore these questions, but will focus on the following

problem:

An entity (say some corporation) wants to combine some sets of constructed infor-

mation (or data) into a new set of symbols which clarifies the object from which the in-

formation (or data) originated. The technology developed includes a finite number of

algorithms to compute the combinations. The entity has two problems it would like to

address:

1. In documenting its efforts, writing patent applications, conversing with the fusion

community, and contracting for technologies from other entities, it needs a common

framework (preferrably quantitative in nature) to accomplish these tasks.

2. How does the entity compete the algorithms to ensure it is getting the most for its

investment?

In particular, we envision developing a rigorous mathematical lexicon for the US Air Force

to use in creating documents contracting for fusion technologies. Although the definitions

will be structured from abstract mathematical ideas, the vocabulary will be rather intuitive

in nature. Furthermore, we present one concept of how to compete fusion technologies.

Main mathematical results are identified as theorems, lemmas, and corollaries.

Since information fusion is a rapidly advancing science, researchers are daily adding

to the known repertoire of fusion techniques (that is, fusion rules); however, a method-

ology to define what fusion is and when it has actually occurred has not been widely

discussed or identified in the literature. An organization that is building a fusion sys-

tem to detect or identify objects using existing assets or those yet to be constructed will

want to get the best possible result for the money expended. It is this goal which moti-

vates the need to construct a way to compete various fusion rules for acquisition purposes.

There are many different methods and strategies involved with developing classification

systems. Some rely on likelihood ratios, some on randomized techniques, and still others

with a myriad of schemes. To add to this, there exists the fusion of all these technolo-

gies which create even more classification systems. Since receiver operating characteris-
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tic (ROC) curves can be developed for each system under test conditions, we propose a

functional defined on ROC curves as a method of quantifying the performance of a classi-

fication system. This functional then allows for the development of a cogent definition of

what is fusion (i.e., the difference between fusion rules, which do not have a reliance upon

any qualitative difference between the ‘new’ fused result and the ‘old’ non-fused result)

and what we term fusors (a subcategory of fusion rules), which do rely upon the qualita-

tive differences. While the development of some classification systems require knowledge

of class conditional probability density functions, others do not. A testing organization

would not reveal the exact test scenario to those proposing different classification systems

a priori the test. Therefore, even those systems relying upon class conditional density

knowledge a priori can at best estimate the test scenario (and by extension the operational

conditions the system will find itself used in later!).

The functional we propose allows a researcher (or tester) who is competing classifi-

cation systems to evaluate their performance. Each system generates a ROC or a ROC

curve based on the test scenario. The desired scenario of the test organization may be ex-

amined under a range of assumptions (without actually retesting), and functional averages

can be observed as well, so performance can be compared over a restricted range of as-

sumed cost functions and prior probabilities. The result is a sound mathematical approach

to comparing classification systems. The functional is scalable to any finite number of

classes (the classical detection problem being two classes), with the development of ROC

manifolds of dimensionn ≥ 3. The functional will operate on discrete ROC points in the

n-dimensional ROC space as well. Ultimately, we will be able under certain assumptions

and constraints, to compete families of classification systems, fusion rules, fusors, and

fused families of classification systems in order to choose the best from among finitely

many competitors.

The relationships between ROCs, ROC curves, and performance has been studied for

some time, and some properties are well known. The foundations for two-class label sets

can be reviewed in [10,14,17,30,34,36,41,45]. The method of discovery of these prop-

3



erties are different from our own. Previously, the conditional class density functions were

assumed to be known, and differential calculus was applied to demonstrate certain prop-

erties. For example, for likelihood-based classification systems, the fact that the slope of

a ROC curve at a point actually is the likelihood ratio which produces this point, seems

to have been discovered in this manner [14]. Using cost functions in relation to ROC

curves to analyze best performance has recently (2001) been recognized by Provost and

Foster [42], based on work previously published by [17, 36, 48]. The main assumption

in most of the cited work, with regard to ROC curve properties, is that the distribution

functions of the conditional class densities are known and differentiable with respect to

the likelihood ratio (as a parameter). We take the approach that, as a beginning for the

theory, we have ROC manifolds that are continuous and differentiable, but we apply vari-

ational calculus to a weighted distance functional on a specific family of manifolds, which

has the effect of identifying the point on the ROC manifold which minimizes Bayes Cost.

Under any particular assumption on prior probabilities and costs associated with errors in

classification, such a point exists for every family of classification systems. This is not

to say the classification system is Bayes Optimal with respect to all possible classifica-

tion systems, but rather it is Bayes optimal with respect to the elements of the family of

classification systems producing the ROC manifold. We believe this functional (which is

really a family of functionals for each finite number of classes considered) eliminates the

need to discuss classification system performance in terms of area under the ROC curve

(AUC), which is so prevalently used in the medical community, or volume under the ROC

surface (VUS) [12,37], since these performance ‘metrics’ do nothing to describe a classi-

fication system’s value under a specific cost-prior assumption. Any classification system

used will be set at a particular threshold (at any one time), and so its performance will

be measured by only one point on the ROC curve. The question is “What threshold will

the user choose?” We submit that this performance can be calculated very quickly under

the test conditions desired (using ROC manifolds) by applying vector space methods to

the knowledge revealed by the calculus of variations approach. Additionally, the novelty

4



of this proposal also relies on the fact that no class conditional densities are assumed (by

the tester), and that the parameters of the functional can be chosen to reflect the desired

operational assumptions of interest to the tester. For example, the tester could establish

that Neyman-Pearson criteria will form the data of the functional, or maybe to minimize

a Bayes cost functional, the tester may wish to examine performance under a range of

hypotheses. Once the data are established, the functional will induce a partial ordering

on the category of fusion rules, fusors, and ultimately the set of families of classifica-

tion systems. This partial ordering is a category in itself, but is also used to provide a

mathematical definition of a fusor, which is derived from the fusion rules, and embodies

mathematically the qualitativeness desired by researchers according to the application of

the problem to which they are engaged. In other words, we have put to paper the defini-

tion of what makes a fusion rule based classification system “better” than the classification

systems from which it was derived. An illustrative example and further applications of

the functionals, with consideration of robustness, are put forth in the final section of this

dissertation.

1.2 Literature Review

Our literature review consisted of three main areas: information or data fusion, cat-

egory theorywith data fusion, and ROC analysis. We were interested in how other re-

searchers discussed and communicated their ideas of fusion, and in particular, whether

mathematical descriptions of the overall fusion process are used (and not just a particular

technique). Our decision to use category theory as the mathematical language prompted a

search for the application of category theory to the science of information fusion. Finally,

how do researchers ensure their results have the quality required to actually call what they

are doing fusion? We decided to explore the world of ROC analysis since every classifi-

cation system can generate at least one ROC, and this seemed a reasonable place to look

for the type of functions (or functionals) which would be useful to provide a definition for

quality of a particular fusion rule.
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1.2.1 Data Fusion. As late as 1999, Dr. Wald in [54] described the challenges in

the science of data fusion, posed by not having a language with common terms. These

challenges are readily seen in the early results of the JDL definitions, where the language

of what fusion was consisted of combining, integrating, estimating, predicting, scheduling,

optimizing, and more! The earlier Handbook of Data Fusion [15] had this definition of

fusion (from the JDL Data Fusion Lexicon):

A process dealing with the association, correlation, and combination of data
and information from single and multiple sources to achieve refined position
and identity estimates, and complete and timely assessments of situations and
threats, and their significance. The process is characterized by continuous re-
finements of its estimates and assessments, and the evaluation of the need for
additional sources, or modification of the process itself, to achieve improved
results.

This definition was pruned in [15] to be:

Data fusion is the process of combining data or information to estimate or
predict entity states.

Dr. Wald correctly identified some of the problems and expressed the desire to have a

more suitable definition with the following principles:

• The definition should not be restricted to data output from sensors alone;

• It should not be based on the semantic levels of the information;

• It should not be restricted to methods and techniques;

• It should not be restricted to particular system architectures.

He then went on to write a definition, “data fusion is a formal framework in which are

expressed means and tools for the alliance of data originating from different sources. It

aims at obtaining information of greater quality; the exact definition of ’greater quality’

will depend upon the application.”

Here we have two definitions, which are very close, but still at odds. The first does

not require a formal framework, which the second does, and also throws in the purpose for

the fusion, but no necessity of the quality of the information (at least not explicitly stated).
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The second requires tools for the alliance of data from different sources (without defining

what is different about them), states the purpose much better, and allows the quality of the

improvements to rest with the body of research. This ’greater quality’ is still not defined.

While these two works focus on definitions, the vast majority of other data fusion

papers and books focus on the use of particular mathematical techniques. Each author

shows the cases in which his technique is optimal (see for example [6, 23, 24]), and com-

pares against a single parameter, such as probability of detection, or uses a ROC curve. In

those cases where ROC curves can be shown to be dominant in the compared technique,

the fusion rule is proven, but in cases where ROC curves cross this comparison is not

possible without further elaboration and theory development. Performance evaluation is

also a concern in [33], where the use ofinformation measures of effectiveness (MOEs)are

discussed. The focus here is on multisource-multitarget statistics, referred to as FISST

(finite set statistics). The use of information theory measurements are used, such as the

Kullback-Liebler cross entropy or discrimination. The use of these measures seems to

only pertain to the signal level of the classification system. In particular, the Kullback-

Liebler discrimination uses the probability distribution associated with ground truth and

the random variable representing a sensor system. Since we will show the classification

system is a random variable made up sensors, processors, and classifiers, the information

theory approach is useful for the development of better sensors (and possibly processors).

The drawbacks are that it does not respect Bayesian principles, in that it does not allow

for testing of different prior probabilities and costs. In the cases which they seem to be a

good measurement, the label sets are simply the two-class case of classification systems.

Extending the distribution functions to a joint distribution function ofk classes will prove

to be very cumbersome to the researcher. We admit the connections between the infor-

mation theory measurements and the classification system measurements of probabilities

of error need to be formally explored, but this is beyond the scope of this dissertation.

1.2.2 Category Theory and Fusion. Literature in the area of Category Theory

and Fusion is very limited. There are only a few authors that have attempted to use

7
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Figure 1.1: The Joint Directors of Laboratories Functional Model of Data Fusion [15].

the mathematics in this sense [7, 25–27]. Each of these works relies upon the use of

formal systems, or systems constructed from first predicate logic. These are systems a

computer can understand through the writing of software. These constructions require

that theories can be written, using symbolic logic, which completely describe the target

classes of interest. Also required are models of the environment, which incorporate these

theories. The categories are actually categories whose objects are specifications (from the

computer language SlangR© by Specware). Each specification consists of a collection of

pairs of theories and signatures (languages). The arrows of the category are mappings

(not in the sense of functions) changing one specification into another, so that identities

are clearly defined. In these papers fusion is an “operator” which returns the colimit of

the objects. This turns out to be the disjoint union of the theories and languages. The

operation is subject to a constraint that maintains the consistency of the category. We will

show, as an example, after our development of a fusion definition, how this construction

fits into our view.
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Another set of interesting papers of category theory application has been written by

Dr. M. J. Healy [19–22] of Boeing. Healy puts forth the notion of a categoryNeur of

neural networks. The objects of this category are the nodes of the neural net, and the

arrows are the primed paths (the identity arrows being clear). Composition is the usual

composition of arrows, so that if one path is primed and a second is primed from the range

of the first, then there is a primed path from the domain of the first to the range of the

second. He then asserts that memories are the colimits of primed paths in [19]. Colimits,

functors, and natural transformations in a different category show the shortcomings of

adaptive resonance theory (ART) networks [22]. Colimits again play a pivotal role in [20],

which expands the previous work, by enabling a new categoryConcof concepts, which is

like Kokar’s work in that it relies upon theories and predicate logic, and defining functors

betweenConcandNeur.

With all these works pointing towards creating categories which then depend on col-

imits as their fusion, is it then true that colimits are the definition of fusion we’re looking

for? We don’t think so based on the following:

• while colimits are optimal in an algebraic sense, there are still classification parame-

ters to be considered. For example, just because a colimit can be calculated, doesn’t

equate to the new classification being correct! There is the possibility that error in

the original data has skewed the colimit to producing something which performs

worse than one of the systems we started with, thus ignoring the desired qualitative

aspect to fusion we’re looking for.

• the colimits developed were specific to formal methods used in designing computer

systems. They are not applicable to other systems designed in different ways. Ac-

cording to Dr. Wald, then, this requires a particular system architecture; therefore,

we cannot define fusion based on these cases alone.

1.2.3 ROC Analysis. Receiver Operating Characteristics (ROCs) play a signifi-

cant role in determining the performance of classification systems. They have been used
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extensively in the medical and psychological communities with regard to imaging and di-

agnoses [14, 48]. The definitions of ROCs and ROC curves and manifolds are presented

in Section 2.2. There are in general two ways to look at the analysis of ROCs. The first

is to consider an entire family of classification systems which create a ROC curve or man-

ifold. The second is to consider that each classification system creates a ROC, that there

are particular families of these classifications which can be constructed with meaning, and

that there is a Bayesian interpretation of their significance with respect to the problem of

classification.

We explore the first viewpoint by noting that in two-class problems, the ROC curve

is an entity in two space, the basis of which is two error axes. Thus, the ROC curve can

be used to calculate certain statistical properties of the original family of classification

systems. One such measurement is the area under the ROC curve (AUC). The area under

the ROC curve has been described in a couple of different ways:

• Given two instances of data, one from each of the two populations, the AUC is the

probability of the system correctly identifying the class of each instance of data

[14].

• The more general view is that AUC is a measure of how well a family of classifica-

tion systems separate the conditional class distribution functions of the two classes.

We will point out that the emphasis on the family of classification systems is ours. Gen-

erally, researchers have regarded these curves as being derived from a single classification

system. This is an incorrect view of the problem of ROC analysis. It is recognized

that to generate a curve or a manifold, a parameter (which is possibly multi-dimensional)

must be varied. This changes the classification system, so that it does not have the same

performance as the original one.

The AUC is, in general, the measurement sought after by many researchers, and re-

searchers have gone out of their way to estimate it by many means. These means include

calculating the ROC convex hull (ROCCH) [41,42], the Mann-Whitney test, and the Gini

coefficient [16]. These efforts are based on the belief that the AUC divorces the problem
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from finding out the costs involved in making the errors the ROC measures and in know-

ing the relative ratios of the classes in question. In other words, by using the AUC and

the associated estimates, one does not need to concern oneself with prior probabilities and

the costs of making certain errors in classification. We show in Section 4.3 that this is

not the case. When one believes the AUC or any other measure based on ROCs (such as

the Neyman-Pearson criterion) has divorced the problem from assuming particular costs

and/or prior probabilities, one is deceived.

The second viewpoint is present in the works of [2,3,41,42]. This viewpoint provides

a way of working with prior probabilities and costs. It is the more valid viewpoint in our

opinion, based on our theoretical developments. This is due to the fact that the problem of

optimizing the ability to discriminate between multiple classes is anoptimizationproblem

with assumptions and constraints, not just a statistical problem. One cannot divorce

the problem from the inherent prior probabilities and costs precisely because when you

establishanycriterion by which to make the discriminations, attached to it is an underlying

cost-prior ratio, which is now simply hidden, so that one cannot escape from facing the

costs and the prior probabilities of the problem. This is most clearly laid out in [40].

The problem is certainly expanded when one considers multiple class problems (prob-

lems where the classes in question number greater than two). A few papers have been

written concerning this. In [16], the first viewpoint is used, and statistical estimates are

developed to compare families of classification systems. In our view, this will lead to the

selection of classification systems that are suboptimal to the problems where some knowl-

edge regarding costs and prior probabilities exist. Also, we do not explore the inherently

statistical nature of the work.

In [37], three classes, all mutually exclusive, are analyzed, and Volume Under the

Curve (VUC) is explored as a measure of how well a family of classification systems per-

forms. We have the same criticisms regarding the significance of this measure; however,

the paper goes further, at least, in describing the geometry on which such a construct re-

lies. There is no discrimination between the types of errors committed, since the axes
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developed are each based on correct identifications, and not incorrect identifications. We

show later that fork classes there arek2 − k error axes required for a full ROC manifold

development and that only if errors within types have identical costs associated with them

can we project the problem intok dimensions (so that for3 classes you need6 dimensions

for a full ROC manifold, but could project into3 dimensions only if the errors within

classes have identical costs).

The authors’ [41,42] show the greatest amount of promise in the field, by focusing on

the optimization of costs. It is well known that if one considers a ROC curve as a function,

with the independent variable being the false positive and the dependent variable the true

positive, then under a mild assumption of smoothness, the ROC curve is differentiable,

and one can show that to minimize the Bayes Cost function with two classes, one needs to

find the point on the ROC curve which has a particular cost-prior ratio as a derivative. The

only paper we found with a “proof” of this was [36], in which he claims the result can be

shown. His own analysis fails to prove the achieved critical points are always a minimum.

In fact, since the second derivative test is inconclusive, one must use the first derivative

test to prove the minimum. The first derivative test is not available to us in the case of

multivariate problems. We use calculus of variations and the global optimization theory

of vector space methods to prove this not just for ROC curves, but we have extended

the method to prove it for ROC manifolds, so that problems of multiple classes can be

analyzed using the Bayesian methods. Our method involves only the geometry of the ROC

manifold in ROC space, along with the same cost function (examined as the functionalJ

in Chapter IV).

Much use is made in [41, 42] of the ROCCH. The usefulness of the ROCCH is ap-

parent when one considers creating randomized decision rules from previously created

families of classification systems. When two classification systems overlap, one can con-

sider the ROCCH as a solution to which classification system to choose, since the ROCCH

can be created under a convex combination of selecting probabilistically one family or the

other. We show, however, that with respect to a particular cost-prior assumption, no ben-
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efit is gained by doing this, since under these assumptions no greater cost benefit can be

achieved along the extension of the convex hull than there is at the endpoints (which al-

ready exist). Under the first viewpoint, there is a benefit. That is the direct increase in

the area under the curve, so that by randomly selecting the family from which to choose,

one may increase the overall ability to separate the conditional class distribution functions,

associated with the classification families. Similarly, in [12], the search is on to construct

the convex polytope associated with three class (andn class) problems. The authors use

the “trivial” classification systems to construct the best estimate of the convex polytope,

but they also recognize the efforts of [37] and [16] in their approach.

ROCs also have an inherent application to detection problems involving electronics

(thus the “receiver” in receiver operating characteristics). This history and analysis can

be found in textbooks, particularly in [10, 30, 34, 45]. The emphasis in these texts are

towards the development of classification systems and not the performance evaluation

from ROCs only. In some respects the developments in these texts overlap with our

development, but from the opposite approach. There are also some errors made in the

texts, which are not apparent until you really dive into some of the analysis with respect

to risk sets (particularly the min-max example in [45]). We need to point out two things

with respect to this. First, our optimization is significantly different in its characterization

of the problem. We use calculus of variations and properties of linear transformations to

establish our optimization problem and we pick up on some differences that we feel are

very important. Secondly, there is no connection to information fusion or category theory

given in these texts. So our application is certainly new and independent and extends

the field of knowledge. Overall, we believe our review to be sufficient to look into the

use of ROCs, ROC curves, and ROC manifolds in order to produce a theory which is

satisfactory to discriminating the performance of one classification system over another,

or one family of classification systems over another. If an objective function can be

produced on ROCs, ROC curves, and ROC manifolds, then we can define the qualitative
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nature of fusion according to each application (that is, which fusion rules are better than

the original classification systems, and which fusion rules are superior to others).
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II. Background

2.1 Mathematical Formalisms and Definitions

This work is inherently an applied math dissertation. As such, the background ma-

terial required in order to understand it is drawn from the areas of Topology, Category

Theory, Probability Theory (measure-theoretic in scope), and some vector space knowl-

edge. We assume a basic knowledge of vector spaces is understood by the reader, but

certain useful definitions and theorems are stated concisely in this section to facilitate the

readers understanding. Definitions of receiver operating characteristics (ROCs), ROC

curves, and ROC manifolds are also given, along with a couple of convergence theorems

useful to understanding the context of why ROC analysis has drawn such attention from

researchers.

2.1.1 Topology Formalisms and Definitions.

Definition 1 (Preimage). Let f be a function withX the domain off andY the range.

Then givenB ⊂ Y , we denote the preimage ofB overf by f \(B), where

f \(B) = {x ∈ X : f(x) ∈ B ⊂ Y }. (2.1)

The symbol\ is the natural symbol from music literature (also known as the becuadro) and

is used precisely because we do not want to confuse the preimage of a set over a function

with the inverse of the function, which is denoted asf−1.

Definition 2 (Topology, Topological Space [38]).A topologyτ on a setX is a collection

of subsets ofX such that:

i. X, ∅ ∈ τ .

ii. Arbitrary collections of sets ofτ have their unions inτ .

iii. Finite collections of sets ofτ have their intersections inτ .
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The sets contained inτ are called the open sets ofX. We say(X, τ) is a topological

space.

Example 1. Here is an example from [38]. Given a setX, with an order relation<, and

a, b ∈ X, the following types of sets are in the topology:

1. (a, b) = {x | a < x < b};

2. [a0, b) = {x | a0 ≤ x < b}, wherea0 is the smallest element ofX (if one exists);

3. (a, b0] = {x | a < x ≤ b0}, whereb0 is the largest element ofX (if one exists);

The collectionB of such sets for alla, b ∈ X is theorder topology onX.

Definition 3 (Hausdorff Space).A topological space(X, τ) is a Hausdorff space if for

any two elementsx1, x2 ∈ X with x1 66= x2, there exists open setsU, V ∈ τ such that

x1 ∈ U andx2 ∈ V , with U ∩ V = ∅.

Example 2. The set of real numbers,R, with the Euclidean metric of distance between

two points, is an example of an Hausdorff Space.

Definition 4 (Metric, Metric Space). Let X be a set. Then forx, y, z ∈ X, if there exists

a functiond, such thatd : X ×X → R+, which satisfies the conditions:

i. d(x, y) ≥ 0 (non-negativity);

ii. d(x, y) = 0 iff x = y (positive definiteness);

iii. d(x, y) = d(y, x) (symmetry);

iv. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality);

thend is a metric. We call(X, d) a metric space, though the notation is often suppressed

to simplyX.

Example 3. The Euclidean metric of distance, givenx, y ∈ X, d(x, y) = |x− y| is a

metric. Every Euclidean metric induces a topology as well, since open sets can be defined

in terms of Euclidean distance, and a basis for such topologies can easily be formed using

open balls inX.

16



Definition 5 (Open Ball in Rn). An open ball inRn relative to a metricd is writtenB(x; r)

where there is no misunderstanding of the metric. The meaning of the open ball is

B(x; r) = {y ∈ Rn | d(x, y) < r},

wherex ∈ Rn is the center of the ball withr its radius.

Example 4. Let (R, d) be a metric space. Then forε > 0 andx ∈ R,

B(x; ε) = {y : d(x, y) < ε}

forms an open ball inR.

Definition 6 (m-Manifold [38]). Let m ∈ N be given. A topological space(X, τ) is an

m-Manifold if it is a Hausdorff space and has a countable basis such that each neighbor-

hood of a pointx1 ∈ X is homeomorphic with an open subset inRm.

Example 5. In Rn, n ≥ 3, a1-manifold is a curve, a2-manifold is a surface, etc.

2.1.2 Probability Theory Formalisms and Definitions.Necessary to reading this

dissertation is a common frame of reference with regard to category theory and probability

theory. We will start with the latter and the reader can always familiarize himself with [5]

for probability theory, or [43,44] for elementary measure theory.

Definition 7 (Algebra or Field of Sets). Let X be an arbitrary set. A collectionB of

subsets ofX is an algebra or a field if it satisfies three properties:

i. X ∈ B.

ii. For anyB ∈ B, we have the set complement,X\B, writtenB̃, also inB.

iii. Given the finite collection{Bi ∈ B : i = 1, 2, . . . , n ∈ N}, then
n⋃

i=1

Bi ∈ B.

Definition 8 (σ-algebra or σ-field). Let X be an arbitrary set. A collection of subsets,

B, of X is aσ-algebra, orσ-field, onX if B satisfies three properties:
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i. X ∈ B.

ii. For anyB ∈ B, we haveB̃ is also inB.

iii. Given the countably infinite collection{Bi ∈ B : i = 1, 2, . . .}, then
∞⋃
i=1

Bi ∈ B.

We can see that aσ-field is a field of sets as well.

Example 6. Given a setX, the power set ofX, P(X), is aσ-field.

Definition 9 (Positive Measure).Let X be a set andB be aσ-field overX, then any

set functionν defined onB with rangeR[0,∞] is called a positive measure onX if it is

countably additive. That is, given a disjoint, countable collection,{Bi}∞i=1, of sets inB,

then

ν

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

ν(Bi).

Example 7. See [43] for the definition of outer measure onR. Outer measure returns

lengths of intervals onR, so that outer measure is a positive measure onR.

Definition 10 (Sample Space).Given a complexΓ of conditions, which allows any num-

ber of repetitions (an experiment, for example), there is a collection of elementary events,

ξ, ς, ζ, . . ., not necessarily countable, which is called the sample space, and will be de-

noted asΩ [28].

Example 8. An example of a complex of conditionsΓ is “the tossing of a coin”, while

the sample spaceΩ = {h, t}, whereh is the event of getting a “head” as a result, andt the

event of getting a “tail”. IfΓ is “the tossing of a coin two times”, then

Ω = {h, h, h, t, t, h, t, t} is the sample space. If the eventT implies that a tail results, then

any of the last three elementary events ofΩ has occurred. The complex of conditions will

usually be described using language in order to identify meaning. This language then

leads to the formation of the sample space and theσ-field so that a probability measure

can be defined. All probabilistic mathematical language for the given problem flows from

this beginning.
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A σ-field, B, can be developed onΩ, so that the pair(Ω, B) is a measurable space.

Given a positive measureµ on (Ω, B) , the triple(Ω, B, µ) is called a measure space.

Definition 11 (Measurable Function). Let (X, B) be a measurable space and(Y, τ) be

a topological space. A functionf is called measurable if for eachE ∈ τ , we have

that the preimage ofE underf , denotedf \(E), is also an element ofB. We callf a

B-measurable function.

Example 9. Let µ be Lesbegue measure onR. Consider any continuous functionf with

compact support. Since the preimage of an open set is open for continuous functions,

and open sets are always contained in the Borelσ-field, we have that these functions are

measurable.

Definition 12 (Finite, σ-Finite Measures). If µ(Ω) < ∞, thenµ is a finite measure.

A measureµ is σ-finite if there exists a sequence{Bn} of elements ofB such that

Ω =
∞⋃

n=1

Bn andµ
(
Bn

)
< ∞ for eachn ∈ N. Finite measures are clearlyσ-finite as well.

Example 10. Lesbegue measureµ on R is an example of aσ-finite measure. Consider

the countable balls with radiusε > 0 and centersx ∈ Q. The union of these balls isR,

while the measure of each ball is finite.

Definition 13 (Probability Measure, Probability Space [49]).Given a measurable space

(Ω, B), a positive measureµ with µ(Ω) = 1 is defined as a probability measure. A prob-

ability measure is a finite measure and therefore aσ-finite measure as well. The measure

space(Ω, B, µ) is called a probability space.

Notice how the properties of the definitions flow:

SinceΩ ∈ B, then∅ ∈ B. Therefore, sinceµ(Ω) = µ(Ω ∪ ∅), we have
by the definition of a positive measure the property of countable additivity, so
thatµ(Ω) = µ(Ω) + µ(∅). Sinceµ(Ω) = 1, we have that

1 = 1 + µ(∅),

so thatµ(∅) = 0. Furthermore, for anyB ∈ B, we have0 ≤ µ(B) ≤ 1, and
sinceµ(Ω) = µ(B) + µ(B̃) we have that

1− µ(B) = µ(B̃).
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Definition 14 (Bayes Theorem).Given a probability space(Ω, B, µ), andB1, B2 ∈ B,

the conditional probability ofB1 givenB2 is written

P (B1|B2) =
µ(B1 ∩B2)

µ(B2)
.

With this in mind, Bayes Theorem states

P (B1|B2)µ(B2) = P (B2|B1)µ(B1), (2.2)

so that

P (B1|B2) =
µ(B1)

µ(B2)
P (B2|B1). (2.3)

The notation is written to emphasize thatP is not a measure, but rather given an eventB2,

thenP (·|B2) is a measure which is related to the measureµ by the definition. We refer to

the left hand side of the equation as the conditional probability of the eventB1 given event

B2 has occurred, while the conditional probability on the right-hand side of the equation

is referred to as the posterior probability. Each real numberµ(B1) andµ(B2) is a prior

probability.

Definition 15 (Random Variable). Given a probability space(Ω, B, µ) and a measurable

space(Ώ, B́), we sayf : Ω −→ Ώ is a random variable iff \(E) ∈ B for eachE ∈ B́.

We sayf is anΏ-valued random variable.

Note: It is true that aΦ-valued, measurable function,g : Ω −→ Φ, is aΦ-valued ran-

dom variable for any topological space(Φ, τ), since there always exists a smallestσ-field

containing the elements ofτ [44]. The specific language “random variable”, without the

hyphenated prefix, is reserved for the case whenΦ = R.

Definition 16 (Stochastic Process [9]).Let (Ω, B, µ) be a probability space andΘ a set

of parameters which may be finite, countably infinite, or uncountable. Then a family of

random variables indexed byΘ, X = {Xθ : θ ∈ Θ} is a stochastic process. IfΘ is count-

ably infinite or finite, thenX is adiscrete parameter process. If Θ is a continuous
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parameter, thenX is acontinuous parameter process. If we fix ω ∈ Ω, and allowθ

to vary, then the functionX·(ω) is a sample function whenΘ is uncountable. WhenΘ is

countable or finite, thenX·(ω) is a sample sequence.

2.1.3 Category Theory. This section draws upon definitions contained in [53].

Category theory is a branch of mathematics useful for determining universal properties

of objects. The science of information fusion does not yet know of all the relationships

involved between the classes of data and the mappings from one type of data to another.

It has been our goal to try to engage the community to think in terms of generalities when

studying fusion processes in order to abstract the processes and perhaps gain some clarity

of thought, if not genuine insight. We have drawn upon the work of various authors in

Category Theory literature [1,29,32,35] to present the definitions.

Definition 17 (Category). A categoryC is denoted as a4-tuple,

C =
(
Ob(C),Ar(C), Id(C), ◦

)
,

and consists of the following:

A1. A class of objects denotedOb(C), so objectO ∈ Ob(C).

A2. A class of arrows denotedAr(C), so arrowf ∈ Ar (C).

A3. Two mappings, called Domain (dom) and Codomain (cod), which assign to an ar-

row f ∈ Ar(C) a domain and codomain from the objects ofOb(C). Thus, for

arrow f ∈ Ar (C), there exist objectsO1 = dom(f) andO2 = cod(f) and we

represent the arrowf by the diagram

O1
f // O2 .

A4. A mapping assigning each objectO ∈ Ob(C) an unique arrow1O ∈ Id(C) called

the identity arrow, such that

O
1O // O
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and such that for any existing element,x, of O, we have that

x � 1O // x.

A5. A binary mapping,◦ , called composition,Ar(C)×Ar(C) ◦ //Ar(C) . Thus,

givenf, g ∈ Ar(C) with cod(f) = dom(g) there exists an uniqueh ∈ Ar(C) such

thath = g ◦ f .

Axioms A3-A5 lead to the associative and identity rules:

• Associative Rule. Given appropriately defined arrowsf, g, andh ∈ Ar(C) we

have that

(f ◦ g) ◦ h = f ◦ (g ◦ h).

• Identity Rule . Given arrowsA
f // B and B

g // A , then there exists arrow

1A ∈ Id(C) such that1A ◦ g = g andf ◦ 1A = f .

Definition 18 (Subcategory).A subcategoryB ofA is a category whose objects are some

of the objects ofA, i.e., Ob(B) ⊂ Ob(A), and whose arrows are some of the arrows of

A, i.e.,Ar (B) ⊂ Ar (A), such that for each arrowf ∈ Ar (B), dom(f) andcod(f) are in

Ob(B), along with each composition of arrows, and an identity arrow for each element of

Ob(B).

Definition 19 (Discrete Category).A discrete category is a category whose only arrows

are identity arrows, i.e.,Ar (C) = Id(C) .

Definition 20 (Small Category).A category C is called aSmall Categorywhen the class

Ob(C) is a set.

Note: A historical note on this is that while in this paper and in many works, the only

categories considered are small categories, category theorists are proposing an axiomatic

replacement for set theory as a mathematical foundation. In other words, all mathematical

properties can be shown using an axiomatic category theory rather than the Zermelo-

Fraenkel axioms for set theory. The belief is that the category theory approach will avoid
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certain paradoxes which creep up in set theory, such as “the set whose members are not in

a set”.

Definition 21 (Functor). A functor F between two categoriesA andB is a pair of maps

(FOb, FAr)

Ob(A)
FOb //Ob(B)

Ar(A)
FAr //Ar(B)

such thatF mapsOb(A) to Ob(B) andAr(A) to Ar(B) while preserving the associative

property of the composition map and preserving identity maps.

Thus, given categoriesA,B and functorF : A // B , if A ∈ Ob(A) andf, g, h, 1A ∈

Ar(A) such thatf ◦ g = h is defined, then there existsB ∈ Ob(B) andf ′, g′, h′, 1B ∈

Ar(B) such that

i) FOb(A) = B.

ii ) FAr(f) = f ′, FAr(g) = g′.

iii ) h′ = FAr(h) = FAr(f ◦ g) = FAr(f) ◦ FAr(g) = f ′ ◦ g′.

iv) FAr(1A) = 1FOb(A) = 1B.

We denote a functorF between categoriesA andB with the diagram

A F // B .

Example 11. An elementary example of a functor is the forgetful functor. LetGRP be

the category of groups which has as objects groups and as arrows morphisms between

groups. LetU (G) denote the underlying set of elements of a given group G. Then the

forgetful functor,F, maps groups to their underlying sets, and all arrows to the identity

arrow on the underlying set.

Definition 22 (Natural Transformation). Given categoriesA andB and functorsF and

G with A F // B and A G // B , then aNatural Transformation is a family of arrows
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ν = {νA : A ∈ Ob(A)} such that for eachf ∈ Ar(A), A
f // A′ , A′ ∈ Ob(A), the

square diagram

A

f

��

F(A)
νA //

F(f)

��

G(A)

G(f)

��
A′ F(A′)

νA′ // G(A′)

commutes. We say the arrowsνA are the components of

ν : F // G ,

and callν the natural transformation ofF to G.

Example 12. This example is from [32]. LetCRng be the category of commutative

rings, andGLn(·) be the category of general linear groups, which consists of alln × n

invertible matrices over commutative ring(·). The determinant of the matrices is a natural

transformation (since the matrices are calculated with the same formula regardless of the

ring used) making the following square commute (K∗, K ′∗ are rings with their additive

identity removed, so that all of the elements are invertible, and therefore they are objects

of the categoryGRP.):

K

f

��

GLn(K)
DetK //

GLn(f)

��

K∗

f∗

��
K ′ GLn(K ′)

DetK′ // K ′∗

This says that for every morphism,f of commutative rings, the determinant is natural

among functorsCRng −→ GRP.

Definition 23 (Functor CategoryAB). Given categoriesA andB, the notationAB rep-

resents the category of all functorsF such thatB F // A . This category has all such

functors as objects and the natural transformations between them as arrows. We can also
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have that given objectsA ∈ OB(A) andB ∈ OB(B), there exists functor categories

denoted asAB,AB, andAB as well.

Definition 24 (Product Category). Let {Ci}n
i=1 be a finite collection of small categories.

Then the cartesian product

n∏
i=1

Ci = C1 × C2 × · · · × Cn

forms a category called the product category. For eachO ∈ Ob
( n∏

i=1

Ci

)
, then

O = (O1, O2, . . . , On) whereOi ∈ Ob(Ci) for i = 1, 2, . . . , n. For each arrowf ∈

Ar
( n∏

i=1

Ci

)
, thenf = (f1, f2, . . . , fn) wherefi ∈ Ar (Ci) for i = 1, 2, . . . , n. Given

arrowsf , g ∈ Ar
( n∏

i=1

Ci

)
, then the composition of these arrows mean

f ◦ g = (f1 ◦ g1, f2 ◦ g2, . . . , fn ◦ gn)

2.1.3.1 Category Examples.Some examples of categories are:

Example 13.The category of all Abelian Groups,Ab. Here the objects are abelian groups

and the arrows are all morphisms from one Abelian Group to another.

Example 14. The categoryBan of Banach Spaces. Here the objects are Banach Spaces,

and the arrows are all bounded linear transformations between them.

Example 15. The categoryVectK of finite-dimensional Vector Spaces over the fieldK.

The objects are finite vector spaces and the arrows are all linear transformations between

them.

Example 16. The categorySET, a small category whose objects are sets and arrows are

the total functions between them.

Example 17. The categoryCAT, a small category whose objects are small categories

and arrows are the functors between them.
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Some examples of functors are:

Example 18. F : Ab → SET, which is the forgetful functor which simply maps all non-

identity arrows in the categoryAb which map from an object to the identity arrow of that

object, now considered as a set only within the categorySET, rather than a group.

Example 19. G : Ban(X) → Set, the functor mapping all subspaces of a Banach space

X to their respective subsets. Non-identity arrows are mapped to identity arrows, so this

functor is also a ”forgetful” functor.

2.2 Receiver Operating Characteristic (ROC) Background

2.2.1 Definition of ROC curve. Let (Ω, B, µ) be a probability space,L be a two-

class label set,L = {`1, `2}, and letX(t, ·) : Ω → L be a discrete random variable

indexed by aparameter setT, wheret ∈ T is a parameter, andT might be uncountable

and multidimensional. We will refer to the sample functionXt(·) = X(t, ·) as a classifier

of members ofB. Usually,T is homeomorphic to some subset ofRm for somem ∈ N.

We assumeΩ can be partitioned into two sets of events, soΩ = Ω1 ∪ Ω2, where the first

setΩ1 corresponds to the label`1, and the second to the label`2. Thus,Ω1 ∩ Ω2 = ∅

is assumed. Under the assumption of only two labels, we will assume thatT is a one-

dimensional parameter space.

Each classifierXt can make a mistake in classification. There are two types of errors

it can make. It can assign objects in class 1 to label`2, or it can assign objects in class 2

to label`1. Let X\
t (`i) denote the pre-image of the label`i under classifierX(t, ·). We

can construct the two conditional probabilities of a classifier making these errors as

p1|2(t) = P (`1 | Ω2) =
µ(X\

t (`1) ∩ Ω2)

µ(Ω2)
. (2.4)

and

p2|1(t) = P (`2 | Ω1) =
µ(X\

t (`2) ∩ Ω1)

µ(Ω1)
. (2.5)

26



whereµ(Ω2) andµ(Ω1) are the prior probabilities of their respective events and thepi|j(t)

for i, j = 1, 2 are the conditional class probabilities of classifying an event as`i when

event`j has occured. Two conjuctive, conditional class probabilities, constructed in the

same manner, form the following relationships [11]:

p1|2(t) + p2|2(t) = 1 (2.6)

p2|1(t) + p1|1(t) = 1 (2.7)

For a specifict ∈ T, the ordered pair,(p1|2(t), p1|1(t)) is called the receiver operating

characteristic (ROC) of classifierX(t, ·), when the dependent class isΩ1. We will use

the notation(p1|2(t), p2|1(t)) as the ROC, however, to better accommodate our description

of then-class problem. A setX = {X(t, ·) : t ∈ T} is called a family of classification

systems (alternatively, a classifier family). We say the set of triples formed byX,

f̃X =
{
(t, p1|2(t), p2|1(t)) : t ∈ T, Ω = Ω1 ∪ Ω2

}
forms a ROC trajectory, when it is lower semi-continuous and monotonic, non-increasing

(see [9] regarding distribution function properties for comparison). We say the set

fX =
{
(p1|2(t), p2|1(t)) : t ∈ T, Ω = Ω1 ∪ Ω2

}
, (2.8)

which is the projection of̃fX from the spaceT×R[0, 1]2 into the spaceR[0, 1]2, is the ROC

curve of family of classification systemsX, when its closure has endpoints in the compact

intervalR[0, 1], and it is lower semi-continuous, and monotonic non-increasing. We also

call the ROC curve the ROC manifold (technically, a ROC1-manifold, see Lemma 2.2.2),

since this curve is homeomorphic toR1 for every open ball on the curve and it is a Haus-

dorff space.
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Figure 2.1: A Typical ROC Curve from Two Normal Distributions

Definition 25 (Proper ROC Curve [4]). Given a metric space(T, d) and a (one-dimensional)

parametert ∈ T, a continuous ROC curvefX as defined in Equation 2.8 is called a proper

ROC curve when

1. lim
t→∞

(p2|1(t), p1|2(t)) = (0, 1).

2. lim
t→−∞

(p2|1(t), p1|2(t)) = (1, 0).

Typically, ROC curves are graphed using(p2|1(t), p1|1(t)) as coordinate pairs , producing

a curve from(0, 0) to (1, 1). For multi-class problems (greater than two classes), this is

not the best visualization scheme to follow.

2.2.2 ROC Space. Many publications refer to the real set productR([0, 1]) ×

R([0, 1]) as ROC space. This terminology is unfortunate sinceR([0, 1]) is not a ‘space’

in the sense of a linear space. We clarify here that by the term ROC space we mean

the topological subspace(R2([0, 1]), τ) of (R2, τ) whereτ is the Euclidean topology (the

topology induced by the usual distance metric).

Lemma 1 (ROC1-Manifold). A proper ROC curve is a1-manifold in ROC space.
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Proof: LetS =
{
(P2|1(Aθ), P1|2(Aθ)) : θ ∈ Θ, Ω = Ω1 ∪ Ω2, Aθ ∈ A

}
be a proper ROC

curve, with{Ω1, Ω2} a partition ofΩ into two classes. Letx(θ) = P2|1(Aθ), y(θ) =

P1|2(Aθ), and letx = x(θ),y = y(θ) for brevity of notation. Letε > 0 be given. The

norm‖·‖ is Euclidean2-norm. An open setA in S is open relative to the usualR2 topol-

ogy. There is a countable basis for this topology which consists of the open balls of

rational radiusr about each coordinate point with rational first component. To showS is

Hausdorff let(x, y) and(w, z) be two distinct points inS. Then we have that

‖(x, y)− (w, z)‖ = δ,

for someδ ∈ R. Let γ = δ
2
. Thus we have that

B((x, y); γ) ∩ B((w, z); γ) = ∅

are two intersecting open sets containing the two distinct points.

Now let (x, y) ∈ S be given. Define a functiong : B
(
(x, y); ε

)
→ B

(
x; ε

)
⊆ R1 by

g[(x, y)] = x, ∀ (x, y) ∈ B
(
(x, y); ε

)
,

whereB
(
·; ε

)
is an open ball of radiusε with center·. Clearly,g is one-to-one, since for

z ∈ R such thatx = z we have that there existsy2 ∈ R with g[(z, y2)] = z. Thus, if

(x, y) 6= (z, y2), then eitherx 6= z (which is a contradiction) ory 6= y2. Supposey 6= y2.

ThenS is not a set representation of a function, which is a contradiction, since this is

implicit in the definition ofS. Therefore,(x, y) = (z, y2), andg is one-to-one. Thus,g

has an inverse,g−1.

Now, letξ > 0 be given, withε > ξ > 0. Then for(x2, y2) ∈ B
(
(x, y); ε

)
such that

‖(x, y)− (x2, y2)‖ < ξ
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we have that

‖g[(x, y)]− g[(x2, y2)]‖ = ‖x− x2‖

≤
√

(x− x2)2 + (y − y2)2

= ‖(x− x2, y − y2)‖

= ‖(x, y)− (x2, y2)‖

< ξ (2.9)

so thatg is continuous as well. Sinceg is continuous over every compact subset of

B
(
(x, y); ε

)
, g−1 is continuous ong(B

(
(x, y); ε

)
). Now, there exists an open set,O ⊆

R[0, 1], such thatO ⊆ g[B
(
(x, y); ε

)
] andg\(O) = B

(
(x, y); ε

)
. Hence, for allo ∈ O,

g−1(o) ∈ B
(
(x, y); ε

)
. Since,g[g−1(o)] ∈ g

(
B

(
(x, y); ε

))
for all o ∈ O, we have that

B
(
(x, y); ε

)
⊆ S is homeomorphic toO ⊆ R1, with

g : B
(
(x, y); ε

)
→ O

being the homeomorphism, so thatS is a1-manifold in ROC-space. ♦

An example is seen in Figure 2.1. This proof can be extended to show that a ROC

surface inn-space is a ROC(n− 1)-manifold, the basis of the manifold being the points

on the ROC surface corresponding to(r1, r2, . . . , rn−1, xn) where the firstn − 1 compo-

nents are rational numbers, withxn being the dependent component, along with rational

radii in an(n− 1)-ball open relative to theRn topology.

2.2.3 ROCn-Space. We will retain the conventional language of ROC space

and offer an extension ton2 dimensions. Suppose we have a multi-class label set (a

label set with more than two labels). To construct a corresponding ROC space, in the

case ofm > 2 labels, we desire to haven = m2 − m axes, so we will designate this

ROC space as a ROCn-space. This is due to the fact that when there arem classes,

the number of possible types of classifications of the classification system ism2 and the
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number of conjunctive conditional probability equations ism (which also corresponds to

the number of correct classifications), so that there arem2 − m degrees of freedom left

after the application of the conjunctive equations (instead of the usual fact of contingency

tables allowingm2 − 1 degrees of freedom), which we have already seen in the case of

m = 2 with the application of the conjuctive equations in Equations 2.6 and 2.7. So if we

associate a correct classification with them conjunctive equations, then we havem2 −m

incorrect classifications corresponding to the degrees of freedom, each demanding its own

axis in ROCn-space. If we were to allow all errors to have equal cost, then we can

combine all errors within a class, and we would then haven = m2 − m(m − 1) = m

degrees of freedom, which is the same as the number of classes, each one requiring its

own axis. Whenm = 2, we have thatn = 2, which results in the typical ROC space of

ROC curves.

In the case of three classes,m = 3, as an example, examine the conjunctive condi-

tional probability equations (with notation suppressed with respect to the sample functions

involved),

p1|1 + p2|1 + p3|1 = 1

p1|2 + p2|2 + p3|2 = 1

p1|3 + p2|3 + p3|3 = 1

for i, j = 1, 2, 3. This system could be described by a3×3 stochastic matrix. Notice that

once the errors of each row are given, the correct classification is completely determined
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by the equation. Additionally, the equations could be rewritten as

p2|1 + p3|1 = 1− p1|1

p1|2 + p3|2 = 1− p2|2

p1|3 + p2|3 = 1− p3|3

so that the ROC space needed to describe the system completely is now3-space due to all

costs being equal (in this case, costci,j = 1,∀ i, j). There is a relationship between the

dimensionality of a parameter setT and the dimensionality of the ROC manifold. Ulti-

mately, we want to construct ROC manifolds which allow a unique optimization point to

be embedded in the manifold, while maintaining independence of the conditional proba-

bilities of n− 1 classes. If

r = dim(T) > n− 1,

then there are several optimal points embedded in the ROCr-manifold, so that a unique

solution cannot be found analytically. Ifr < n − 1, then a unique optimization point

embedded in the ROCr-manifold can be found, but independent control over all of the

conditional probabilities is lost and information corresponding to each class is incomplete.

Therefore, when we refer to ROCn-space, the ROC manifolds assumed to inhabit it are

ROC(n− 1)-manifolds unless otherwise declared. This means the parameter spaceT is

assumed to be of dimensionn − 1, and this guarantees a unique optimization point with

respect to the assumptions on prior probabilities and costs.

2.2.4 Convergence of Receiver Operating Characteristic (ROC) curves.Albert

Einstein once said, ”Not everything that can be counted counts, and not everything that

counts can be counted.” [47] Part of the reason we use ROC curves is due to their inherent

dependency upon probability theory. Some sets have measure (they count, but may not be

countable), and some have none (they don’t count, though they may be countable). The
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ROC curve is a graph of tradeoffs of the errors made by families of classification systems.

Virtually all ROC manifolds are estimates of performance and do not meet the theoretical

constraints we have defined. However, Alsing, in his Ph.D. dissertation [4], put forth

a theorem which shows that estimates of ROC curves, created from calculating the true

positive and false positive rates, converge tothe ROC curve of a family of classification

systems. We rely upon this convergence when we discuss the theory, because without it,

not much makes sense. Therefore, we refer tothe ROC curve. Alsing’s proof of ROC

convergence focused on two things:

1. p̂
(n)
i|j (t) are estimates (random variables) which depend upon the actual (he says fi-

nite) data collected during the test.

2. There is a collection of metrics which show, forP̂n(t) =
(
p̂

(n)
1|2 (t), p̂

(n)
1|1 (t)

)
and

metricd in his collection, that

lim
n→∞

d
(

P̂n(t), P(t)
)

= 0

for someP. ThisP is referred to asthe [emphasis mine] ROC curve.

With this proof we can theorize more about the actual underlying ROC curves and compare

the systems they represent without much worry over our goals. After all, if we have a

non-continuous collection of ROC points from a family of classification systems, we can

approximate the underlying continuous ROC curve by connecting the points with straight

lines. We can then imagine a sequence of such ROC curvesconvergingto the ROC curve

in order to talk about where the optimal points on the curve are, and perhaps to compare

one curve generated by a family of classification systems to a finite number of other curves

generated by different families of classification systems.

There are a few problems with Alsing’s approach and proof. First, it relies upon the

assumption of convergence of the sets of finite feature vectors to the sample space. There

are two errors with this statement. First, I believe he means to say that in some way he

can take countably increasing random samples of feature vectors, which are converging
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to the test sample space. This convergence is described as being in the Hausdorff metric.

This is the second error, since although the Hausdorff metric is calculated using the clo-

sure of each set relative to the other, there is no way one can accomplish this with even a

countable collection of random variables. Additionallly, he relies upon ‘balanced’ sam-

ples of class1 and class2 objects of detection. This is unrealistic and unnecessary to the

proof when using the Law of Large Numbers [5]. Therefore, Hausdorff measure is not

a sufficient constraint for the theorem, the sets of random samples need to be constructed

appropriately, and there is no need for these sets to strive for balance if they are truly

random samples. Furthermore, there needs to be a proof showing convergence of ROC

curves when the test sample spaces are a collection of countably increasing nested sample

spaces with the population sample space as the union of the collection. Together these

two proofs would demonstrate that as you increase the number of random samples from

a test sample space, the conditional probabilities (and the ROC manifolds) converge to

the expected values almost surely, and that as you nest your sample spaces in a countably

infinite fashion, your conditional probabilities (and the ROC manifold) converges almost

surely. This is important if you are going to use ROC manifolds from a test as a measure

of performance. Thus, if we set up the test to reflect as accurately as possible the real

world, and we take enough random samples, we can have confidence in using the ROC

curve as a performance characteristic of families of classification systems participating in

the same procedure.

Alsing begins his proof by showing that̂p
(n)
i|j (·) (my notation, not his) is a consistent

estimator. He shows it is a consistent estimator of the mean. This is true due to the weak

law of large numbers (in his proof he applies Chebyshev’s inequality), so that for each

t ∈ T we have that

p lim
n→∞

p̂
(n)
i|j (t) = πi,j, (2.10)

for some mean valuei,j, wherep lim
n→∞

denotes the limit in probability. Alsing does not

characterize the valuesπi,j beyond this orP(·) =
(
p1|2(·), p1|1(·)

)
(the ROC curve), and

fails to connect the expected values of his random variables to the actual conditional prob-
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abilities he’s trying to prove his estimates to converge to. Moreover, his collection of

metrics seems to require the measure space(T, T , µ) from which we draw the parameter

t be such thatµ(T) < ∞ (that is, a finite measure space). This is certainly not correct for

T = R andµ being Lebesgue measure. Even the simplest of toy problems hasT = R,

so then no positive, translation-invariant measure can be used to scaleT down to a finite

measured set.

Therefore, we offer a proof of convergence that characterizes better the nature of ROC

convergence, and we extend the result to problems with classes greater than2.

Theorem 1 (Extension of Alsing’s ROC Convergence, Convergence of ROC mani-

folds). Letk ∈ N be given,m = k2 − k. Given denumerable, nested partitions of random

samples, whose union is a sample population, the sequence of ROC(m− 1)-manifolds,

constructed from sample functions with parameter setΘ, a σ-finite measure space, con-

verges to a ROC manifold.

Proof: Let (Ω, B, µ) be a probability space and(Θ, A , µ) be aσ-finite measure space

of parameters. Let{Ωj}k
j=1 be a partition ofΩ into k classes. LetOn ∈ B for each

n ∈ N. Let On ↑ Ω asn →∞, i.e., O1 ⊆ O2 ⊆ . . . On ⊆ . . . ⊆ Ω and
∞⋃

n=1

On = Ω. For

eachn let {On,j}k
j=1 be a partition ofOn into thek classes. We assumeOn,j 6= ∅ for each

n, j ∈ N and thatOn,j ↑ Ωj asn →∞ for each1 ≤ j ≤ k. Let

α = min
0<i<n
1<j<k

{µ2(Oi,j), µ(Oi,j)µ(Oj)}.

Let A be a family of classification systems ofΩ, so that for each parameterθ ∈ Θ,

Aθ : Ω → O defines a discrete,B-measurable random variable.

Denote byA\
θ(k) the preimage of classk underAθ. Let On be the sample space

of thenth instantiation of data. Now fixθ ∈ Θ, whereθ = (θ1, θ2, . . . , θk2−k) and let

∆ = {δ1, δ2, . . .} be a discrete index set. Then for eachOn,j we can construct a new

probability space,(On,j, Bn,j, µn,j), whereBn,j is aσ-field onOn,j, with Bn,j ⊆ B, and

µn,j(B) = µ(B)
µ(On,j)

for eachB ∈ Bn,j. Let Ci,j,n = A\
θ(i) ∩On,j
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Now, for eachδr ∈ ∆, construct the random variable

X
i|j
δr

(θ, ·) = ICi,j,n(·),

whereI is an indicator function. This random variable essentially tells us whether or

not anω ∈ On,j is classified as an error or not. Then the expected value of the random

variable is

E{X i|j
δr
} = E{ICi,j,n}

=

∫
On,j

ICi,j,ndµn,j

=
µ(Ci,j,n)

µ(On,j)

= P(A\
θ(i)|On,j)

= p̂i|j(θ).

Now let

p̆
(m)
i|j (θ) =

1

m

m∑
r=1

X
i|j
δr

.

Since{X i|j
δr
}∞r=1 are independent identically distributed random variables, by the strong

Law of Large Numbers [5], we have that

p̆
(m)
i|j (θ) → P(A\

θ(i)|On,j) = p̂
(n)
i|j (θ) almost surely µ as m →∞.
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Considerwlog that errorp̆(m)
k−1|k is the dependent variable with respect to the classification

system. Then fixing the parameterθ ∈ Θ and letting

P (m)(θ) =
(
p̆

(m)
2|1 ((θ), p̆

(m)
3|1 (θ), . . . , p̆

(m)
k|1 (θ), . . . , p̆

(m)
1|k (θ), . . . , p̆

(m)
k−1|k

)
, (2.11)

we have that the set of(k2 − k)-vectors

{
P (m)(θ) : θ ∈ Θ

}
(2.12)

forms an estimate of the ROC manifold. We assume it is a proper ROC manifold, and that

(Θ, A , ζ) is aσ-finite measure space. Let

P (n)(θ) =
(
p̂

(n)
2|1 (θ), p̂

(n)
3|1 (θ), . . . , p̂

(n)
k|1(θ), . . . , p̂

(n)
1|k(θ), . . . , p̂

(n)
k−1|k

)
(2.13)

and now consider the product measureµ × ζ. Thus, by Fubini’s Theorem [44] we have

that

lim
m→∞

∫
Θ×Ω

∣∣P (m)(θ)− P (n)(θ)
∣∣d(µ× ζ)

= lim
m→∞

∫
Θ

[ ∫
Ω

∣∣P (m)(θ)− P (n)(θ)
∣∣ dµ

]
dζ

= lim
m→∞

∫
Ω

[ ∫
Θ

∣∣P (m)(θ)− P (n)(θ)
∣∣ dζ

]
dµ

= 0,

so thatP (m)(θ) → P (n)(θ) almost everywhereµ× ζ. ♦

Next, we offer a continuation of the idea of convergence by now considerinig a ROC

manifold convergence. This convergence is similar to the convergence of distribution

functions with the exceptions that, 1) because ROCs are inherently connected to probabil-

ity measures, any convergence can only be as strong as convergence almost everywhere,

37



and 2) the converging sequence of ROCs is constructed by building up smaller probability

spaces into a universal one (universal with respect tothe population).

Theorem 2 (ROC Convergence).Let k ∈ N be given,m = k2 − k. Given denumer-

able, nested partitions of random samples within denumerable, nested partitions of sam-

ple populations, whose union isthe population, the sequence of ROC(m− 1)-manifolds,

constructed from sample functions with parameter setΘ, converges to the ROC manifold.

Proof: Let the assumptions be the same and the estimates be the same as the results in

Theorem 1. Let̂p(n)
i|j (θ) = P (A\

θ(i)|On,j) be the estimate of the conditional probability,

pi|j(θ) = P (A\
θ(i)|Ωj). Now consider the following two notes:

1. SinceOn,j ↑ Oj, ∃ N1(θ) ∈ N such that forn ≥ N1 we have that

|µ(Oj)− µ(On,j)| <
εα

2µ(A\
θ(i) ∩Oj) + 1

for eachi, 1 ≤ i ≤ k and eachj, 1 ≤ j ≤ k.

2. Consider that(A\
θ(i) ∪On,j) ⊆ (A\

θ(i) ∪Oj). Since

(A\
θ(i) ∪On,j) = µ(A\

θ(i)) + µ(On,j)− µ(A\
θ(i) ∩On,j)

and

(A\
θ(i) ∪Oj) = µ(A\

θ(i)) + µ(Oj)− µ(A\
θ(i) ∩Oj),

then by the monotonicity ofµ we have that

µ(A\
θ(i)) + µ(On,j)− µ(A\

θ(i) ∩On,j) ≤ µ(A\
θ(i)) + µ(Oj)− µ(A\

θ(i) ∩Oj),

so that

µ(A\
θ(i) ∩Oj)− µ(A\

θ(i) ∩On,j) ≤ µ(Oj)− µ(On,j).
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Thus, since the left side of the equation is non-negative, we have that

|µ(A\
θ(i) ∩Oj)− µ(A\

θ(i) ∩On,j)| ≤ |µ(Oj)− µ(On,j)|.

Now ∃ N2 ∈ N such that forn ≤ N2 we have that

|µ(Oj)− µ(On,j)| <
ε α

2|µ(Oj)|
,

for all j. Thus,

|µ(A\
θ(i) ∩Oj)− µ(A\

θ(i) ∩On,j)| <
ε α

2|µ(Oj)|
,

for all j.
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Now letN = max{N1, N2}. Then for eachθ, andn ≤ N , we have that

∣∣∣pi|j(θ)− p̂
(n)
i|j (θ)

∣∣∣ =

∣∣∣∣µ(A\
θ(i) ∩Oj)

µ(Oj)
− µ(A\

θ(i) ∩On,j)

µ(On,j)

∣∣∣∣
=

∣∣∣∣µ(On,j)µ(A\
θ(i) ∩Oj)− µ(Oj)µ(A\

θ(i) ∩On,j)

µ(Oj)µ(On,j)

∣∣∣∣
≤

∣∣∣µ(On,j)µ(A\
θ(i) ∩Oj)− µ(Oj)µ(A\

θ(i) ∩Oj)
∣∣∣∣∣∣µ(Oj)

∣∣∣∣∣∣µ(On,j)
∣∣∣

+

∣∣∣µ(Oj)µ(A\
θ(i) ∩Oj)− µ(Oj)µ(A\

θ(i) ∩On,j)
∣∣∣∣∣∣µ(Oj)

∣∣∣∣∣∣µ(On,j)
∣∣∣

≤

∣∣∣µ(A\
θ(i) ∩Oj)

∣∣∣∣∣∣µ(On,j)− µ(Oj)
∣∣∣

α

+

∣∣∣µ(A\
θ(i) ∩Oj)− µ(A\

θ(i) ∩On,j)
∣∣∣∣∣∣µ(Oj)

∣∣∣
α

<

∣∣∣µ(A\
θ(i) ∩Oj)

∣∣∣ε α

2(
∣∣∣µ(A\

θ(i) ∩Oj)
∣∣∣ + 1)α

+

∣∣∣µ(Oj)
∣∣∣ ε α

2
∣∣∣µ(Oj)

∣∣∣α
<

ε

2
+

ε

2
= ε. (2.14)

This convergence occurs almost everywhere,a.e., since it cannot be shown to occur over

sets ofµ-measure zero. This is equivalent to almost sure,a.s ., convergence and conver-

gence with probability 1 (also known as convergence in law), since we are using probabil-

ity measureµ. Recall that classpk−1|k is the dependent class conditional probability with

regard to the classification system. Let

Q(n)(θ) =
(
p̂

(n)
2|1 (θ), p̂

(n)
3|1 (θ), . . . , p̂

(n)
k|2(θ), . . . , p̂

(n)
1|k(θ), . . . , p̂

(n)
k−2|k(θ)

)
(2.15)
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Then the set ofk2 − k − 1-vectors over allΘ,

{
Q(n)(θ) : θ ∈ Θ

}
, (2.16)

defines thenth ROC estimate of the ROC manifold. We assume it is a proper ROC

manifold. Thus for eachn ∈ N there exists a continuous real-valued function ink2−k−1

variables. Let

gn

(
Q(n)(θ)

)
= p̂n

k−1|k(θ)

be such a function. Let

Q(θ) =
(
p2|1(θ, p3|1(θ), . . . , pk|2(θ), . . . , p1|k(θ), . . . , pk−2|k(θ)

)
(2.17)

for eachθ ∈ Θ, and set

g
(
Q(θ)

)
= pk−1|k(θ)

It is clear from Theorem 1, that:

1. gn is continuous onΘ;

2.
∣∣∣gn

(
Q(n)(θ))

∣∣∣ ≤ 1 for all θ ∈ Θ; and

3. gn

(
Q(n)(θ)) → g

(
Q(θ)) a.e. for fixedθ.

Then for ε > 0 given, letB(Θ; ε) be an openε-ball in Θ. Thus, by the Dominated

Convergence Theorem, we have that

lim
n→∞

∫
B(Θ;ε)

∣∣∣gn − g
∣∣∣dζ = 0. (2.18)

so that lim
n→∞

gn = g a.e. on B(Θ; ε). This convergence is uniforma.e. over compact

subsets ofΘ. ♦
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III. A Category Theory Description of Fusion

3.1 Probabilistic Construction of the Event-Label Model

Let C be a complex of conditions [28] for a repeatable experiment, and letΩ be a set

of outcomes of this experiment withT ⊂ R being a bounded interval of time. IntervalT

sortsΩ such that we callE ⊆ Ω× T anevent-state. An event-state is then comprised of

event-state elements,e = (ω, t) ∈ E, whereω ∈ Ω andt ∈ T. Thuse denotes a stateω at

an instant of timet. LetΩ×T, be the set of all event-states for an event over time interval

T. LetE be aσ-field onΩ×T, andµ be a probability measure defined on the measurable

space(Ω× T, E , µ). Then the triple(Ω× T, E , µ) forms a probability space [5].

The design of a classification system involves the ability to detect (or sense) the oc-

currence of an event inΩ, and process the event into a label of setL. For example, design

a system that detects airborne objects and classifies them friendly or unfriendly. To do

this a classification system relies on several mappings, which are composed, to provide

the user an answer (from the event, to the label). SinceE is aσ-field onΩ × T, then let

E ∈ E be any member ofE . Then a sensor,s, is defined as a mapping fromE into a (raw)

data setD. We denote this with the diagram

E
s // D

sos(e) = d ∈ D for all e ∈ E. The sensor is defined to produce a specific data type, so the

codomain ofs, cod(s) = D, whereD is the set describing the data output of mappings.

A processor,p, of this system must have domain, dom(p) = D, and maps to a codomain

of features,F (a refined data set), cod(p) = F. This is denoted by the diagram

D
p // F .

Further, a classifier,c, of this system is a mapping such that dom(c) = F and cod(c) = L,

whereL is a set of labels the user of the system finds useful. This is denoted by the
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diagram

F
c // L .

Therefore, we can denote the entire classification system, which is diagrammed as

E
s // D

p // F
c // L ,

asA, the classification system over an event-stateE, whereA is the composition of map-

pings

A = c ◦ p ◦ s.

Thus,A is anL-valued random variable which maps membersE ∈ E into the label setL

and is diagrammed by

E
A // L .

Consider the simple model of a multi-sensor system using two sensors in Figure 3.1.

The setsEi, for i ∈ {1, 2}, are sets of event-states. The label setLi can be as simple as

E1
s1 // D1

p1 // F1
c1 // L1

E2
s2 // D2

p2 // F2
c2 // L2

Figure 3.1: Simple Model of a Dual-Sensor System.

the two-class set{target, non-target} or could have a more complex structure to it, such as

the typesof targets and non-targets, paired with a ranking of measure, for example [56],

in order to define the battlefield more clearly for the warfighter. Now the diagram in Fig-

ure 3.1 represents a pair of classification systems having two sensors, two processors, and

two classifiers, but can easily be extended to any finite number. Now consider two sensors

not necessarily co-located. Hence they may sense different event-state sets. Figure 3.1

models two sensors with differing fields of view. Performing fusion along any node or

edge in this graph could possibly result in an elevated level of fusion [15]–that of situa-
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tion refinement or threat refinement, since we are not fusing common information about a

particular event or events, but we may be fusing situations.

There are at least two other possible scenarios that Figure 3.1 could depict. The sen-

sors can overlap in their field of view, either partially or fully, in which case fusing the

information regarding event-states within the intersection may be useful. Thus, a fusion

process may be used to increase the reliability and accuracy of the classification system,

above that which is possessed by either of the sensors on its own. LetE represent that

event-state set that is common to both sensors, that is,E = E1 ∩ E2. Hence, there are

two fundamental challenges regarding fusion. The first is how to fuse information from

multiple sources regarding common event-states (or target-states, if preferred) for the pur-

pose of knowing the event-state (presumably for the purposes of tracking, identifying, and

estimating future event-states). This is commonly referred to as Level1 fusion (or Level

0 fusion) Object Assessment. The second and much more challenging problem is to fuse

information from multiple sources regarding event-states not common to all sensors, for

the purpose of knowing the state of a situation (the situation-state), such as an enemy situ-

ation or threat assessment. These are the higher Levels2 and3, Situation Assessment and

Impact Assessment. We distinguish between the two types of fusion scenarios discussed

by calling themevent-state fusionandsituation-state fusion respectively. Therefore,

Figure 3.2 represents an Event-State-to-Label model of a dual sensor process. The only

D1
p1 // F1

c1 // L1

E

s1

>>~~~~~~~~

s2

  @
@@

@@
@@

@

D2
p2 // F2

c2 // L2

Figure 3.2: Two Classification Systems with Overlapping Fields of View.

restriction necessary for the usefulness of this model is that a common field of view,E,

be used. Consequently,D1 andD2 could actually be the same data set under the model,

while s1 ands2 could be different sensors. We will refer to a finite number of families of
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classification systems, such as the two in Figure 3.2, which we wish to explore the fusion

of, as a fixed classification category. ForE considered as a category of sets, and a fixed

label setL, we note thatLE , is the functor category of all such classification systems, so

that our fixed classification category is a subcategory ofLE . Each classification system or

set of sample functions comprises a fixed branch ofLE (i.e., a functor or a family of func-

tors). Equally true is the fact that if we want to compete classification systems, we must

test them over the same sample space as well. Therefore, we choose the functor category

LE, with a fixed L and a fixed E, to compete the classification systems over. Our conver-

gence theorems allow us to treat E as if it were thesample population, with the caveat that

our test then is only as good as it is representative of the operational circumstances of the

real-world population.

It is also important to note that when we want to fuse classification systems (or fami-

lies of classification systems heretofore denoted as sample functions), we must be fusing

systems which are originally yielding values from the same label setL, and not just the

same set up to isomorphism. We will later show that there are two kinds of fusion with

regard to these label sets, but for right now, we consider fusing only those branches which

produce values in the same exact set. Additional considerations and techniques must be

used to fuse across different label sets.

3.2 Construction of a family of classification systems

3.2.1 Single Parameter. Now suppose we have a parameterθ ∈ Θ, which is

possibly multidimensional. Then it is common that there is a family,{cθ : θ ∈ Θ}, of

classifiers so that for eachθ ∈ Θ, each composition,

cθ ◦ p ◦ s

describes an event-state model on fixedE ∈ E , and fixed setsD, F, andL. The corre-

sponding family

A = {Aθ | θ ∈ Θ},
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whereAθ = cθ ◦ p ◦ s, is a family of classification systems. Thus,Θ acts as an indexing

set for definingA which also could be thought of as a collection of sample functions or

sample sequences depending on whether or not the parameter set is countable.

3.2.2 Multiple Parameter . One can extend the ideas in Section 3.2.1 to include

other index setsΓ and∆, so that the composition

cθ ◦ pδ ◦ sγ,

whereθ ∈ Θ, δ ∈ ∆, γ ∈ Γ, is a classifier,A(θ,δ,γ). In this case, we must look at the

triple (θ, δ, γ) as the parameters for the ROC manifold. If we have a two-class label set,

then this presents us with the case of degeneracies. For example, suppose we calculate

the optimal point on the ROC1-manifold. Then we have three parameters representing

each point on the curve, so that there may be multiple triples which optimize, none better

than the others. This fact alone may make it difficult to calculate an optimal triple, since

no inverse function mapping ROC points on the curve to the product spaceΘ × ∆ × Γ

exists. To eliminate degeneracies, givenk classes, we requirek2 − k − 1 = m − 1

parameters. Any more than this yields such degeneracies, while any fewer results in

either a smaller dimensional ROC manifold, or a set of ROCs which is not a manifold and

possibly a suboptimal choice of operating parameters (suboptimal with respect to a ROC

(m− 1)-manifold).

3.3 Defining Fusion Rules from the Event-Label Model

At this point we begin to consider categories generated by the model’s sets of data.

LetD = (D, IdD, IdD, ◦) be the discrete category generated by data setD. We use these

categories to define fusion rules of classification systems.

Definition 26 (Fusion Rule ofn Fixed Branches of Families of Classification Systems).

Let Sn be a fixed classification category withn branches. For eachi = 1, . . . , n, let

Oi ∈ CAT be a small category of data corresponding to theith branch’s source of data to
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be fused (this could be raw data, features, or labels). Then the product

π(n) =
n∏

i=1

Oi

is a product category. For any particular category of data,O0, the exponential,Oπ(n)
0 , is a

category of fusion rules, each rule of which maps the products of data objectsOb(π(n))

to a data object inOb(O0), and maps data arrows inAr(π(n)) to arrows inAr(O0).

These fusion rules are functors,R, which make up the objects of the category. The arrows

of the functor category are all the natural transformations between them. We designate

FROn(O0) to be this functor category of fusion rules.

If the Oi are categories generated from sensor sources (i.e., outputs), then we call

Oπ(n)1
0 a category of data-fusion rules and use the symbolsDπ(n)1

0 . The fusion rule branch

would then be diagrammed like this:

E
<s1,s2,...,sn>// π(n)1

r // D0
p // F

cφ // L, (3.1)

whereD0 is the receiving category,r is the fusion rule, and< s1, s2, . . . , sn > is the

unique arrow generated by the productπ(n)1. If the categories are generated by processor

sources, then callOπ(n)2
0 a category of feature-fusion rules and use the symbolsFπ(n)2

0 .

fusion rule branch would then be diagrammed like this:

E
<s1,s2,...,sn>// π(n)1

<p1,p2,...,pn> // π(n)2
r // F0

cφ // L, (3.2)

whereπ(n)1 is the first product of data categories,π(n)2 is the second product of feature

categories, r is again the fusion rule, and< p1, p2, . . . , pn > is the unique arrow generated

by the productπ(n)2. Finally, if they have classifiers as sources, then call them label-

fusion rules (or, alternatively, decision-fusion rules) and use the symbolsLπ(n)3
0 . This
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fusion rule branch would be diagrammed like this:

E
<s1,s2,...,sn>// π(n)1

<p1,p2,...,pn> // π(n)2
<c1,c2,...,cn> // π(n)3

rφ // L, (3.3)

whererφ is a fusion rule for each parameter (in order to generate an appropriate family

of classification systems), and< c1, c2, . . . , cn > is the unique arrow generated by the

productπ(n)3. ( We removed the parameters from the classifiers and replaced them with

a single, possibly vector valued, parameter on the fusion rule).

A fusion rule could be a Boolean rule, a filter, an estimator, or an algorithm. Notice

that our definition of fusion rule does not include a qualitative component; there is no

necessary condition of “betterness” for a fusion rule. The result of applying a fusion rule

to an existing set of fundamental branches could result in output considerably worse than

existed previously. This does not affect the definition. First we define fusion rules as the

key component of the fusion process. Next, we pare down the category to a subcategory

which does include a qualitative component, with one suggested way of accomplishing

this. We now desire to show how defining a fusor (see Definition 30) as a fusion rule with

a constraint changes the Event-State model into an Event-State Fusion model. Continuing

to consider the two families of classification systems in Figure 3.2, it is evident that a

fusion rule can be designed which would apply to either the data sets, the feature sets,

or the label sets (though special care needs to be taken with this case, when the actual

labels are not the same). Given a fusion ruleR for the two data sets as in Figure 3.2, our

model becomes that of Figure 3.3. A new data set, processor, feature set, and classifier

may become necessary as a result of the fusion rule having a different codomain than the

previous systems. The label set may change also, but for now, consider a two class label

set, that of

L = L1 = L2 = {Target, Nontarget},

where the targets and non-targets are well-defined across classification systems (i.e., each

classification is identifying targets that satisfy the same definition of what a target is). In
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D1

E

s1
??~~~~~~~~

s2
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R +3 +3 D3

p // F
c // L

D2

Figure 3.3: Fusion Rule Applied on Data Categories from Two Fixed Branches.

awithin - fusion scenario (see Definition 34 as opposed to Definition 35), the data sets (or

feature sets) are the same,D1 = D2 = D3. This is true in the case that the sensors used

are the same type (that is, they collect the same types of measurements, but from possibly

different locations relative to the overlapping field of view). In the case where the data

sets (or feature sets) are truly different, a composite data set (and/or feature set) which is

different from the first two (possibly even the product of the first two) is created as the

codomain of the fusion rule functor.

Now at this point we may consider, in what way is the process modeled in Figure 3.3

superior to the original processes shown in Figure 3.2 whenL = L1 = L2 (we will deal

with the caseL1 6= L2 later)? One way of comparing performance in such systems is to

compare the processes’ receiver operating characteristics (ROC) curves, which we will do

in the Chapter IV.

3.4 Fusion Rules

3.4.1 Object-Fusion. There are, of course, multiple descriptions in the literature

to “types” of fusion. There isdata-fusion, feature-fusion, anddecision-fusion. There is

data in-feature out fusion [8] and many more. We would like to codify what should be

meant by these expressions by introducing, in its most basic form, a vernacular for fusion

which is intuitive, yet has its definition rooted in mathematics. We start by assuming we

have a finite number of objectswe wish to fuse together. What does the finite set of fusion

rules look like? How can we describe in an observational way what is going on? Once
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the definition of fusion is established, we can move on to labeling types of fusion under

certain model asumptions.

Definition 27 (Object-Fusion Category).Let{Oi | i ∈ {1, . . . ,m}} be a finite sequence

of non-empty categories (possibly discrete). Then

m∏
i=1

Oi

defines a product category (see Definitions 24 and 26). Let

π(m) =
m∏

i=1

Oi

for fixedm ∈ N. Then for a fixed categoryO, we have that

FRπ(m)(O) = Oπ(m)

is a functor category. The functor categoryFRπ(m)(O) is called anπ(m)-Fusion category

relative toO to denote the functors are fusingm Oi -objects, and as necessary, their

accompanying arrows into a single object and arrow inO. When the relationship of all the

Oi objects can be made clear, by simply calling them “objects”, then we callFRπ(m)(O)

the Object-Fusion category relative toO (regardless of the value ofm).

It’s important to note in our definition of fusion rules we did not put forward the notion

of defining fusion rules in terms of performance. We will need a second mathematical

definition later to narrow the category of fusion rules down to a subcategory of fusion

rules, which can be ordered according to their performance in some manner. First we’ll

consider further delineating the types of fusion rules within the Event-State model.

3.4.2 Types of Fusion Rules. We consider digraphG, as depicted in Figure 3.4,

consisting of sample functions which are compositions of random variables.E is an event

in the σ−field, E . The setsD1 andD2 are objects of a finite collection of categories

50



of data sets, while the setsF1 andF2 are objects of a finite collection of categories of

feature sets. The label setsL1 andL2 are the objects of a finite collection of categories

of label sets (and we still require thatL1 = L2). Figure 3.5 shows the nodes in digraph

D1
p1 // F1

cθ // L1

E

s1

88qqqqqqqqqqqqq

s2
&&MMMMMMMMMMMMM

D2
p2 // F2

cφ // L2

Figure 3.4: Digraph G.

G along which fusion rules can be applied. With the use of category theory, we can also

D1
p1 // F1

cθ // L1

E

s1

77oooooooooooooo

s2
''OOOOOOOOOOOOOO

D2
p2 // F2

cφ // L2

fusion

OO

fusion

OO

fusion

OO

Figure 3.5: Known Fusion Rule Nodes of Digraph G.

describe that there should theoretically be nodes along the arrows of digraphG for fusion

rules as well, though we have no example at this time of a rule or algorithm that does this

without using the pointwise outputs of the arrows. Figure 3.6 shows all available fusion

rule nodes applicable (at least theoretically) to the event-state decision model. This leads

to a theorem regarding the types of fusion available under the model.

Theorem 3 (Six Categories of Object-Fusion under digraphG). Let G be a digraph

with an initial vertex andn branches withk vertices to each branch, so that there are
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D1
p1 // F1

cθ // L1

E

s1
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s2
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D2
p2 // F2

cφ // L2

fusion

OO

fusion

OO

fusion

OO

fusion

OO

fusion

OO

fusion

OO

Figure 3.6: Theoretical Fusion Rule Nodes of Digraph G.

nk− (n−1) = n(k−1)+1 total vertices andn(k−1) edges. Then there exists2(k−1)

categories of Object-Fusion that can be performed on any event-state decision model that

G represents.

Proof: Excluding the eventE, there are an equal number of edges and vertices to each

branch. The initial vertex represents the event set while the composition of arrows (edges)

along each branch represent the classification system. Fusion rules are objects within

functor categories, so that if we label the non-initial vertices matrix style with rows repre-

senting branches andk columns representing the vertices:

v11 v12 . . . v1k

v21 v22 . . . ...

...
. . ...

vn1 . . . . . . vnk

(3.4)
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The components of columnj can be considered as beingi categories from a finite subcat-

egory of the categoryCAT. Suppose that in columnj we have categories

Oi , i = 1, 2, . . . , n. Then

π(i)j =
n∏

i=1

Oi

is a product category for thejth column. LetO be any category. Then the functor

categoryFRπ(i)j(O) = Oπ(i)j is theπ(i)j-Fusion category relative toO. Furthermore, in

addition to labeling the non-initial vertices as matrix components, we can create a matrix

from the edges in the same manner, and without loss of generality, the result isk more

fusion categories, so that the total number of fusion categories is2(k − 1). ♦

When the number of vertices per branch,k = 4, as in digraphG0 (see Figure 3.4), then

we have six (2 · (4− 1) = 6) categories of Object-Fusion. Adopting the labeling scheme

used by our model, we can label each category’s “objects” as Sensor-, Data-, Processor-,

Feature-, Classifier-, or Label- (or Decision-)Fusion.

3.4.3 Comparison of Desarathys paradigm with Fusion Categories.The chart in

Table 3.1 shows the relationship between these categories and Desarathy’s breakdown of

the types of fusion.

Desarathy’s I/O taxonomy Category Theory Approach

No taxonomy Sensor-Fusion
Data In-Data Out Data-Fusion

Data In-Feature Out Processor-Fusion or Data-Fusion
Feature In-Feature Out Feature-Fusion

Feature In-Decision Out Classifier-Fusion or Feature-Fusion
Decision In-Decision Out Label-Fusion (also called Decision-Fusion)

Table 3.1: Desarathy’s I/O Fusion categorization from [15] .
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3.5 Operating Characteristic Functionals

Definition 28 (Similar Families of Classification Systems).Two families of classifica-

tion systemsA andB are called similar if and only if they operate on the sameσ-field and

their output is the same well-defined label set.

Suppose we have a fixed classification categoryLE, and letA be an object in this cat-

egory. Then forL consisting ofk labels, there exists a vector in(n = k2 − k)-ROC space

described by ann-vectorvA, where

vA = (p2|1(A), . . . , pk|1(A), . . . , pk−1|k(A)).

The proof is self-evident sinceE is a sample space. We call this vector theoperat-

ing characteristic vector, and we let

V =
{
vA | A ∈ Ob(LE)

}
(3.5)

and

V = OCLE =
(
P(V ),Ar(V ), Id(V ), ◦

)
, (3.6)

whereP(V ) is the power set ofV . The categoryOCLE is the category of operating

characteristic families with undetermined non-identity arrows (we will determine them

presently). Now, consider the category

C = (P(Ob(LE)), Id(LE), Id(LE), ◦)

whose objects are sets of classification systems. ThenA ∈ Ob(C) for each family of

classification systemsA. Let

F : C −→ V (3.7)
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be an operating characteristic functor, which maps power sets of classification systems to

the set of operating characteristics associated with them. Let

ξ : V −→ P (3.8)

be a functor whereP is a poset, thought of as a category induced by a partial order,≥, of its

elements. Thenξ is a functor taking objects consisting of sets of operating characteristics

into a value ofP. We do not need to define the rule at this point. LetA0, A1 ∈ C, such

that

F(A0) = fA0

and

F(A1) = fA1

where the outputs are families of operating characteristics. Then the diagram

fA0

ξ //

g

��

ξ(fA0) = p0

≥

��
fA1

ξ // ξ(fA1) = p1

wherep0, p1 ∈ P, commutes for some unique (up to isomorphism)g. Thisg is an induced

partial order onV. Thus, for every pair of families of classification systems,A0, A1 ∈ C,

we have that the rectangle

A0
F //

�

��

F(A0) = fA0

ξ //

g

��

ξ(fA0) = p0

≥

��
A1

F // F(A1) = fA1

ξ // ξ(fA1) = p1

(3.9)

commutes when we impose the criterionA0 � A1 iff (ξ ◦ F)(A0) ≥ (ξ ◦ F)(A1), so that

the functorξ ◦ F is a natural transformation. It is precisely the arrows likeg, which make
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such rectangles commute, that belong in the categoryV. It is also the arrows induced

from the partial order�, which provide unique maps from one classification family to

another, which will allow us to define the fusion process in Section IV.
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IV. An Optimization for Competing Fusion Rules

4.1 Bayes Optimal Threshold (BOT) in a family of classification systems

4.1.1 Two-class BOT. Let (E, E , µ) be a probability space andA be a family of

sample functions (classification systems) with parameter spaceΘ. Let

{E1, E2 : E1, E2 ∈ E }

be a partition ofE, andL = {`1, `2}. It is well-known and accepted that the threshold for

which the probability of a misclassification (or Bayes error) is minimized is considered

best and denoted the Bayes optimal threshold (BOT). That is, ifAθ∗ ∈ A with θ∗ ∈ Θ

minimizes the quantity

µ
(
(A\

θ(`1) ∩ E2) ∪ (A\
θ(`2) ∩ E1)

)
= µ(A\

θ(`1) ∩ E2) + µ(A\
θ(`2) ∩ E1)

= p1|2(Aθ)µ(E2) + p2|1(Aθ)µ(E1), (4.1)

whereµ(E1) andµ(E2) are the prior probabilities of class1 and class2, respectively.

Thenθ∗ is the BOT for the family of classification systemsA.

4.1.2 N-class BOT. Now let us keep the assumptions of the previous section with

the exception that we now havek classes to consider, and

{E1, E2, . . . , Ek : Ei ∈ E ∀ i = 1, 2, . . . , k}

is a new partition ofE into k classes, withL = {`1, `2, . . . , `k} a label set corresponding

to the partition of classes. Then the corresponding Bayes Optimal Threshold,θ∗ ∈ Θ,

whereΘ is nowk − 1 dimensional would be the parameter which minimizes

Berr =
k∑

i=1

k∑
j=1

(1− δi,j)pi|j(Aθ)µ(Ej), (4.2)
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where

δi,j =

 0 if i 6= j

1 if i = j

.

4.2 An Optimization over ROCm-manifolds for competing fusion rules

4.2.1 ROCm-manifold optimization. The method used in this section applies and

extends that of [31]. Letk ∈ N, k ≥ 1 be given, withm = k2 − k. Let

xm+1 = f(x1, x2, . . . , xm)

be the equation of the ROCm-manifold. Then define

Ψ(x1, x2, . . . , xm+1)
.
= f(x1, x2, . . . , xm)− xm+1.

Let M = {(x1, x2, . . . , xm+1) : Ψ(x1, x2, . . . , xm+1) = 0} be the ROCm-manifold. As-

sumeR(0) = (0, 0, . . . , 0, 0). Then there istf ∈ [0, 1] such thatR(tf ) ∈ M, with tf

dependent upon the particularR. We assume all first-order partial derivatives exist and

are continuous forΨ. For eacht ∈ [0, 1] let R(t) = (X1(t), X2(t), . . . , Xm+1(t)) be a

smooth trajectory that starts at the initial point(0, 0, . . . , 0, 1) and terminates on the man-

ifold M. Choose weightsai > 0 for i = 1, 2, . . . ,m + 1 such that
m+1∑
i=1

ai = 1, and let

‖ � ‖W represent the weighted̀1(Rm+1) norm defined onV = (v1, v2, . . . , vm+1) by

‖V‖W =
m+1∑
i=1

ai | vi | . (4.3)

Define the functionalJ

J [R] =

∫ tf

0

‖Ṙ(t)‖W dt. (4.4)
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Theorem 4 (Thorsen-Oxley).Givenk classes, and a ROCm-manifold, wherem + 1 =

k2 − k is the number of possible types of errors in classification, and given weights

ai = ciαi, a cost times a prior probability (where
m+1∑
i=1

αi = 1), then the Bayes Optimal

Threshold corresponds to the point,p, on the ROCm-manifold,f , where

∇f(p) =
−1

am+1

(
a1, a2, . . . , am+1

)
. (4.5)

Proof: For ease of notation, define

G(t,R(t), Ṙ(t)) = ‖Ṙ(t)‖W

and letYi(t) = Ẋi(t) for eachi. Hence we write Equation 4.4 as

J [R] =

∫ tf

0

G dt (4.6)

and we will suppress the integrand variables. We would like to minimizeJ , so let’s find

R(t) with initial and terminal points as discussed which minimizes the functional.

Let α ∈ [−β, β] whereβ ∈ R, β > 0 be a family of real parameters. Let

{R(t, α) = (X1(t, α), X2(t, α), . . . , Xm+1(t, α)) : α ∈ [−β, β]} (4.7)

be a family of one-parameter trajectories which contains the optimal curveR∗(t). Fur-

thermore we assume that atα = 0 R(t, 0) = R∗(t). Let R(tf , α) ∈ M. By the Implicit

Function Theorem, there is a functionTf (α) such thatR(Tf (α), α) ∈ M for all α. Thus

R(t∗f , 0) = R∗(t∗f ) so thatTf (0) = t∗f . AssumeR∗(t) minimizesJ , then a necessary

optimality condition is that the first variation of

J [R(·, α)] =

∫ Tf (α)

0

G dt (4.8)
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be equal to zero atα = 0. That is,

d

dα
J [R(·, α)]α=0 = 0. (4.9)

We use the notation

δ =
d

dα
|α=0

for brevity. Applying Leibniz’s rule to the derivative of Equation 4.8 we get

δJ [R∗] = G∗|t=t∗f
δTf +

∫ t∗f

0

(∇xG
∗ · δR +∇yG

∗ · δṘ)dt. (4.10)

whereG∗ is a suppressed notation forG(t,R∗(t), Ṙ∗(t)). Now integrating by parts yields

δJ [R∗] = G∗|t=t∗f
δTf + [∇yG

∗ · δR]
t∗f
0 +

∫ t∗f

0

(∇xG
∗ · δR− d

dt
∇yG

∗ · δR)dt. (4.11)

At α = 0 we have the necessary optimality condition

δJ [R∗] = G∗|t=t∗f
δTf +[∇yG

∗·δR]t=t∗f
+

∫ t∗f

0

(∇xG
∗·δR− d

dt
∇yG

∗·δR)dt = 0. (4.12)

Since this must be true over all admissible variations, we have the Euler Equations

∇xG
∗ − d

dt
∇yG

∗ = 0. (4.13)

for all t ∈ [0, t∗f ] and a transversality condition

G∗|t=t∗f
δTf + [∇yG

∗ · δR]t=t∗f
= 0. (4.14)

Solving the Euler Equation 4.13, we have∇xG
∗ = 0, which implies

d

dt
∇yG

∗ = 0, (4.15)

60



hence,
d

dt
sgn(Y ∗

i (t)) = 0 (4.16)

for i = 1, 2, . . . ,m + 1, wheresgn(Z) returns the value of−1, 0, or 1, depending on the

sign of the function Z. Thus, for eachi = 1, 2, . . . ,m + 1, we have

sgn(Y ∗
i (t)) = ki (4.17)

Hence,sgn(Y ∗
i (t)) = ki for someki ∈

{
− 1, 0, 1

}
. Thus, for alli, we have4X∗

i (t) > 0

for all t and4t > 0 for all t, so thatki = 1. It is clear that4X∗
i (t) = 0 is not optimal

given the initial and terminal conditions. Thus, we have that

sgn(Y ∗
1 (t)) = sgn(Y ∗

2 (t)) = . . . = sgn(Y ∗
m(t)) = − sgn(Y ∗

m+1(t)) = 1.

Now R(Tf (α), α) terminates onM, soΨ(R(Tf (α), α)) = 0 for all α. Let R∗(tf ) =

(x∗1, x
∗
2, . . . , x

∗
m+1) ∈ M. Hence,

Xm+1(Tf (α), α) = f(X1(Tf (α), α), . . . , Xm(Tf (α), α)) (4.18)

for all α. Taking the variation of each side, we have

Y ∗
m+1(t

∗
f )δTf + δXm+1(t

∗
f ) =

m∑
i=1

∂f(x∗1, . . . , x
∗
m)

∂xi

[δTf + δXi(t
∗
f )] (4.19)

Expanding Equation 4.19 and definingHi(t) = δXi(t), we have

Ym+1(t
∗
f )δTf + Hm+1(t

∗
f ) =

m∑
i=1

∂f(x∗1, . . . , x
∗
m)

∂xi

Yi(t
∗
f )δTf

+
m∑

i=1

∂f(x∗1, . . . , x
∗
m)

∂xi

Hi(t
∗
f ). (4.20)
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Rearranging terms, rewriting in vector notation, and lettingf ∗ = f(x∗1, . . . , x
∗
m) we have

(
∂f ∗

∂x1

, . . . ,
∂f ∗

∂xm−1

,−1) · (H1(t
∗
f ), . . . , Hm−1(t

∗
f ), Hm(t∗f ))

+ (
∂f ∗

∂x1

, . . . ,
∂f ∗

∂xm−1

,−1) · Ṙ∗(t∗f )δTf = 0, (4.21)

which can be rewritten

∇Ψ∗ ·H(t∗f ) +∇Ψ∗ · Ṙ∗(t∗f )δTf = 0. (4.22)

From Equation 4.14 we write

∇yG
∗|t∗f ·H(t∗f ) + G∗|t∗f δTf = 0. (4.23)

Since both Equations 4.22 and 4.23 must be true over all variations and all possible one-

parameter families, we have

κ∇yG
∗|t∗f = ∇Ψ∗|t∗f (4.24)

for someκ ∈ R. Hence, fori = 1, 2, . . . ,m + 1 we have

∂Ψ

∂xi

|t=t∗f
= κai sgn(Y ∗

i )(t∗f ). (4.25)

In the case ofi = m + 1 we have that

−1 =
∂Ψ∗

∂xm+1

|t=t∗f
= κam+1. (4.26)

Thus, we have thatκ = −1
am+1

. Hence fori = 1, 2, . . . ,m we have that

∂Ψ∗

∂xi

|t=t∗f
=

−ai

am+1

. (4.27)
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This leads to the result that

∇Ψ∗|t∗f =
−1

am+1

(a1, a2, . . . , am+1) (4.28)

is a normal to the ROCm-manifold M at the terminal point ofR∗(t∗f ), the smooth tra-

jectory minimizingJ ! This is a global minimum, since we are optimizing a convex

functional [31]. This agrees with the limited approach based on observation taken by

Haspert [18].

The equation of the plane perpendicular to this normal and tangent to the ROC mani-

fold at the optimal point is

a1(x1 − x∗1) + a2(x2 − x∗2) + . . . + am+1(xm+1 − x∗m+1) = 0. (4.29)

♦

To find (x∗1, x
∗
2, . . . , x

∗
m+1), generate the planea1x1 + a2x2 + . . . + am+1xm+1 = 0,

which passes through the origin, and translate it to the ROCm-manifold towards the

point (1, 1, . . . , 1) until the plane rests tangent to the ROC manifold at a single point.

This point, (x∗1, x
∗
2, . . . , x

∗
m+1), is the terminal point ofR∗(t∗f ). Now, recall thatm =

k2 − k. We associate thek with the number of classes in a classification problem, so

that there is a label set of interest with cardinalityk, and a sample space with a partition

of cardinality k associated with these labels. Letl = 1, 2, . . . , k, and for eachl let

r = 1, 2, . . . , k, r 6= l. Then associate with eachi = 1, 2, . . . ,m an unique(l, r) pair.

Designate for eachxi thatxi = pl|r(Aθ) for someAθ ∈ A, a family of sample functions

(classification systems). Thus, thei variables represent the error axes of thek-class

classification problem. Similarly, we can designate costs (or losses) for each error by

allowingai = cl,r for eachi. Then the sum,

k∑
l=1

k∑
r=1

(
1− δl,r

)
cl,rpl|r(Aθ), (4.30)
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is the equation for Bayes Risk, or Bayes Error in the case wherecl,r = 1 for each(l, r)

pair. We then have for the specificx∗i , that there existsθ∗ ∈ Θ, such that

x∗i = pl,r(Aθ∗), (4.31)

so thatθ∗ is the Baye’s Optimal Threshold (or Baye’s Optimal Risk Threshold) for the

k-class classification problem. When these correspondences can be made (along with

the appropriate dimensionality of the parameter spaceΘ and the ROC manifoldM), it is

clear that our optimal trajectory,R∗(t∗f ), terminates on the ROC manifold corresponding

to the Baye’s Optimal Threshold (or Baye’s Optimal Risk Threshold). Therefore, we have

shown how a ROC manifold can be analyzed to find the point corresponding to the Baye’s

Optimal Threshold.

4.2.2 ROC1-manifold optimization (Optimizing the ROC curve).Here we demon-

strate the optimization of ROC1-manifolds, referred to in this section as ROC curves. We

demonstrate that the technique shown in the previous section applies to the case of the

two-class problem, with the ROC curves having the axestypical in the literature-a true

positive axis in the vertical direction and a false positive axis in the horizontal axis. We

will only consider ROC curves that are smooth (differentiable) over the entire range, i.e.,

we consider the set

C1([0, 1], R) = {f : [0, 1] → R : f is differentiable at each x ∈ (0, 1)

and its derivative f ′ is continuous at each x ∈ [0, 1]}.

Given a diagram describing the family of classification systemsA = {Aθ : θ ∈ Θ}, with Θ

a continuous parameter set (assumed to be one dimensional), and(E, E , µ) a probability

space of features, there is a setτA = {(θ, p2|1(Aθ), p1|1(Aθ)) : θ ∈ Θ} which is called

the ROC trajectoryfor the classification system familyA. The projection of the ROC

trajectory onto the
(
p2|1, p1|1

)
- plane is the setfA = {(p2|1(Aθ), p1|1(Aθ)) : θ ∈ Θ} which
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is the ROC curve of the classification system familyA. Hence, forh ∈ [0, 1] such that

h = p2|1(Aθ) for someθ ∈ Θ, we have that

[p2|1]
\({h}) = {Aθ},

that is, the pre-image ofh underp2|1(·) is the classification systemAθ, which we assume

has a one-to-one and onto correspondence toθ. Therefore, the BOT of the family of

classification systemsA, denoted byθ∗, corresponds to someh∗ = p2|1(Aθ∗) ∈ [0, 1],

which may not be unique, unless the functionp2|1(·) is one-to-one. So, there is at least

one suchh∗, now what can we learn about it? Consider the problem stated as follows:

Let α, β ≥ 0. Among all smooth curves whose endpoints lie on the point
(0, 1) and the ROC curve given byy = f(X(t)), find the curve, defined by
the trajectoryR(t) =

(
X(t), Y (t)

)
, for which the functional

J[R] =

∫ h

0

‖R‖W dt =

∫ h

0

[α|Ẋ(t)|+ β|Ẏ (t)|]dt (4.32)

has a minimum subject to the constraints:

R(0) = (0, 1)
R(h) = (h, f(h)),

(4.33)

for someh ∈ [0, 1] that depends onR. We letX(t) = t due to the constraints
and denoteW = Ẋ(t) andZ = Ẏ (t), so thatẊ(t) = 1, and Equation 4.32
becomes

J[R] =

∫ h

0

[α + β|Z(t)|]dt. (4.34)

Observe thath = p1|2(Aθ) , f(h) = p1|1(Aθ) for someθ ∈ Θ, andβ =
µ(E1) = 1− α with α = µ(E2), the prior probability of a class2 occurrence.

The functionalJ, when minimized, identifies the trajectory with smallest arclength

(measured with respect to the weighted1-norm). The constraints of Equation 4.33 require

that the curve must begin at(0, 1) and terminate on the ROC curve. The integrand of

Equation 4.34 can be written in a suppressed form

G(t,X(t), Y (t), Ẋ(t), Ẏ (t)) = G(t,X, Y, W, Z), (4.35)
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so that the partial derivatives are more easily understood. In the case whereX(t) = t,

thenẊ(t) = 1 and we have that Equation 4.35 can be further suppressed:

G(t, Y, Z) (4.36)

Any R that minimizesJ, subject to the constraints 4.33, necessarily must be a solution to

Euler’s Equation [13]

∂

∂Y
G(t, Y, Z)− d

dt

∂

∂Z
G(t, Y, Z) = 0 for all t ∈ (0, h). (4.37)

From Equation 4.32 we haveG(t, Y, Z) = α + β|Z|, so that ∂
∂Y

G = 0 and ∂
∂Z

G =

β sgn(Z). Hence, we have thatR solves the Euler equation

− d

dt
sgn(Z(t)) = 0 for allt ∈ (0, h). (4.38)

Integrating this equation reveals thatsgn(Z(t)) is constant for allt ∈ [0, h]. SinceY (t) ≤

1 for all t ∈ (0, h), andY (0) = 1, from Constraints 4.33, thensgn(Z(t)) must be0 or−1,

since the trajectory is moving either constantly across to the curve or constantly downward

from the point(0, 1) . Now, if sgn(Z(t)) = 0 for all t, then1 = Y (0) = Y (h) = Y (1)

due to the smoothness of the ROC curve. Substituting this solution into the functionalJ

in Equation 4.32 yields

J[R] = αh = µ(E2)p1|2(Aθ), (4.39)

with p1|2(Aθ) = 1. Thus,J[R] = µ(E2) and the weighted (1-norm) arclength of curve

R is thereforeµ(E2). On the other hand, ifsgn(Z(t)) = −1 for all t ∈ (0, h), then
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|Z(t)| = −Z(t) and substituting this intoJ directly in Equation 4.32 yields

J[R] =

∫ h

0

[
α− βZ(t)

]
dt (4.40)

= αh + β[Y (0)− Y (h)]

= αh + [1− Y (h)]β

= p1|2(Aθ)µ(E2) +
(
1− p1|1(Aθ)

)
µ(E1)

= p1|2(Aθ)µ(E2) + p2|1(Aθ)µ(E1). (4.41)

Notice that Equation 4.41 is identical to the unminimized Bayes Optimal Threshold equa-

tion. Therefore,h = h∗ which minimizes Equation 4.41 corresponds to the BOT,θ∗, of

the family of classification systems,A. The transversality condition [13] of this problem

is

α + β|Z(t)| |t=h∗ +β(f ′(t)− Z(t))sgn(Z(t)) |t=h∗= 0 (4.42)

so that

f ′(h∗) =
α

β
(4.43)

which is

f ′(h∗) =
µ(E2)

µ(E1)
. (4.44)

So the transversality condition tells us that the BOT of a family of classification systems

corresponds to a point on the ROC curve which has a derivative equal to the ratio of prior

probabilities,
µ(E2)

µ(E1)
.

Therefore, if one presumes a ratio of prior probabilities equal to1, then the point on the

curve corresponding to the BOT will have a tangent to the ROC curve with slope 1. We

could substituteα = C1|2µ(E2) andβ = C2|1µ(E1) whereC1|2 andC2|1 are the costs of
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making each error, or we could specify a cost-prior ratio

C1|2µ(E2)

C2|1µ(E1)
,

if we wish to consider costs in addition to the prior probabilities. This gives us an idea

of what would make a good functional for determining which families of classification

systems are more desirable than others. An immediate approach would be to choose a

preferred prior ratio and construct a linear variety through the optimal ROC point (the

point (0, 1) for the typical two-class ROC manifold classification problem, the origin in

the k > 2 class case.). Then for each point on the ROC curve, take the2-norm of the

vector which minimizes the distance from this point to the linear variety. If we knew the

function generating the ROC curve (or a ROC manifold), we could calculate the optimal

ROC directly, but this is not the case in practice.

It is still possible that many ROC curves could be constructed so that the point on

the ROC curve corresponding to the BOT for each one has the same distance to the linear

variety. This could be a rather large equivalence class of families of classification systems.

This is similar to the problem faced when using area under the curve (AUC) of a ROC

curve as a functional. In both cases the underlying posterior conditional probabilities

are unknown and there are just too many possible combinations of posterior distributions

that can produce ROC curves with the same AUC (or equal BOT functional values). The

point, however, is that using a functional based on the BOT, we would have a leveled

playing field since we are debating which ROC (and therefore the classification system it

represents) is better based on thesameprior probabilities. AUC equivalence classes are

over the entire range of possible priors and therefore of less value. Furthermore, the AUC

functional does not relate its values to the unknown priors at all. Rather, it is related to the

value of the class conditional probabilities associated with a classification system overall

possible false positive values. It is therefore essentially useless as a functional in trying

to discover an appropriate operating threshold for a classification system.

68



4.3 A Category of Fusors

4.3.1 A Functional for Comparing Families of Classification Systems.We desire

a method to compete families of classification systems with the specific intent to compete

fusion rules. We show explicitly how to do this withn = 2 classes. Although we are

proposing one specific functional on the ROC curve to do this, other functionals can be

developed as well. Ultimately, once the functional, along with its associated data is

chosen, one has a way of defining fusion (and what we call fusors) for the given problem.

Let n ∈ N be the number of classes of interest, andm = n2 − n. We construct the

functional over the spaceX = C([0, 1]m−1, R) ∩ C1((0, 1)m−1, R), recognizing that we

are competing ROC curves, which are by definition a subset ofX. The functional

F2 : X → R,

wheren = 2 is the number of classes, is denotedF2(·; γ1, γ2, α, β) for the ROC curves

corresponding to a two-class family of classification systems, whereγ1 = C2|1 Pr(`1) is

the cost of the error of declaring classE2 when the class is truthfullyE1 times the prior

probability of classE1, γ2 = C1|2 Pr(`2) is the cost of the error of declaring classE1

when the class is truthfullyE2 times the prior probability of classE2, while α = P1|2 and

β = P1|1 are the acceptable limits of false positive and true positive rates. Without loss

of generality, we assumeγ1 to be the dependent constraint. The quadruple(γ1, γ2, α, β)

comprises thedataof the functionalF2.

Definition 29 (ROC curve Functional). Let (γ1, γ2, α, β) be given data. Let

y0 =

 0

1

 ,Γ =

 γ1

γ2

 ,

and

VΓ = {v | v = kΓ,∀ k ∈ R}.
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ThenVΓ +y0 is a linear variety through the supremum ROC point,(0, 1), over all possible

ROC curves, under the data. Letf ∈ X and letf be non-decreasing. LetR(f) be the

range off , and let

T = ([0, α]× [β, 1]) ∩R(f).

Let zΓ = min
v∈VΓ
y∈T

‖v + y0 − y‖2. Then define

F2(·; γ1, γ2, α, β) : X → R

by

F2(f ; γ1, γ2, α, β) =
√

2− zΓ,∀ f ∈ X. (4.45)

It should be clear that the constant
√

2 is the largest theoretical distance from all linear

varieties to a curve in ROC space.

So far, it is shown thatFn is minimal at the Bayes optimal point of the ROC curve

under no constraints restricting the values possible for it to take in ROC space (i.e. , α = 1

andβ = 0 in the2-class case, andα = (1, . . . , 1) in then-class case). We can now relate

this functional to the Neyman-Pearson (N-P) criteria. Recall that the N-P criteria is also

known as the most powerful test of sizeα0, whenα0 is the a priori assigned maximum

false positive rate [45]. Given a family of classification systemsA = {AΘ : θ ∈ Θ}, the

N-P criteria could be written as

max
θ∈Θ

P1|1(Aθ) subject toP1|2(Aθ) ≤ α0.

Theorem 5 (ROC Functional-Neyman-Pearson Equivalence).Letγ1 be the dependent

constraint, and
2∑

i=1

γi ≤ 1. The ROC functionalF2(·; γ1, γ2, α, β) under data(1, 0, α0, 0)

yields the same point on a ROC curve as the Neyman-Pearson criteria withα ≤ α0.
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Proof: Suppose(γ1, γ2, α, β) = (1, 0, α0, 0). ThenΓ = (1, 0) and

VΓ =

v

∣∣∣∣∣∣ v =

 k

0

 ∀ k ∈ R

,

and let

y0 =

 0

1

 .

Thus,VΓ + y0 is the appropriate linear variety. Let

T = ([0, α0]× [0, 1]) ∩R(f),

wheref is a ROC curve and considerβN ∈ f([0, α0]) as the optimal point in the image of

f under the N-P criteria. ThenzN = 1− βN is the distance toVΓ + y0. Now,

F2(f) =
√

2− zΓ,

where

zΓ = min
v∈VΓ
y∈T

‖v + y0 − y‖2 .

Thus, we have thatβN ≥ β, ∀ β = f(α),∀ α ≤ α0. Hence,1 − βN ≤ 1 − β, ∀ β =

f(α),∀ α ≤ α0. Then for

yN =

 αN

βN

 ,
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we have that

[
(1− βN)2

] 1
2

=

∥∥∥∥∥∥
 αN

1

−

 αN

βN


∥∥∥∥∥∥

=

∥∥∥∥∥∥
 αN

1

− yN

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
 αN

1

−

 α

β


∥∥∥∥∥∥

∀ β = f(α),∀ α ≤ α0. Thus, lettingy =

 α

β

 we have that

min
α≤α0

∥∥∥∥∥∥
 α

1

− yN

∥∥∥∥∥∥ ≤ min
α≤α0

y∈[0,α0]×f([0,α0])

∥∥∥∥∥∥
 α

1

− y

∥∥∥∥∥∥ (4.46)

= min
α≤α0

y∈[0,α0]×f([0,α0])

∥∥∥∥∥∥
 α

0

 +

 0

1

− y

∥∥∥∥∥∥ (4.47)

= min
v∈VΓ

y∈[0,α0]×f([0,α0])

‖v + y0 − y‖ (4.48)

On the other hand,

min
v∈VΓ

y∈[0,α0]×f([0,α0])

‖v + y0 − y‖ ≤ min
v∈VΓ

‖v + y0 − yN‖ (4.49)

≤

∥∥∥∥∥∥
 αN

1

− yN

∥∥∥∥∥∥ (4.50)

=

∥∥∥∥∥∥
 0

1− βN


∥∥∥∥∥∥ (4.51)

= 1− βN . (4.52)
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Therefore, we have that

zΓ = min
v∈VΓ

y∈[0,α0]×f([0,α0])

‖v + y0 − y‖ = 1− βN .

But zΓ = 1−βR, whereβR is the optimal point in the image off under the ROC functional,

so thatβR = βN . So, we have that the ROC functional, under data(1, 0, α0, 0), acting on

a ROC curve corresponds to the power of the most powerful test of sizeα0. ♦

This idea can be extended to thek > 2-class problem by setting a maximum accept-

able error rateαm for each of them− 1 independent error axes, wherem = k2 − k.

4.3.2 The Calculation and Scalability of the ROC Functional.The calculation

and scalability of the functional is straightforward. Suppose we havek classes. In the

two-class case, one axis is chosen asP1|1, but in thek-class case, each axis is an error

axis. This is absolutely necessary in the case where costs of errors differ within a class.

If we apply this methodology to the two-class case, the two axes would beP1|2 andP2|1

with the ROC curve starting at point(0, 1) and terminating at point(1, 0). A ROC at the

origin would represent the perfect classification system (the supremum ROC) under this

scheme. We choose the conditional class probabilitypk|k−1 to be the dependent one. Let

m = k2 − k. Let d = (γ1, . . . , γm, α1, . . . , αm) be the data, and let eachr = 1, 2, . . . ,m

be associated with one of them pairs,(i, j), where for eachi = 1, 2, . . . , k with i 6= j, we

have aj = 1, 2, . . . , k. Let αm be associated withpk|k−1. Let q = (q1, . . . , qm). Then let

Q =
{
q

∣∣ qr = pi|j, r = 1, 2, . . . ,m, pi|j ≤ αr, r 6= m; i, j = 1, 2, . . . , k; i 6= j
}

(4.53)

be the set of points comprising the ROC curve within the constraints. Then we have

thaty0 = (0, 0, . . . , 0) andN = −1
γm

(γ1, . . . , γm), so that if we are given the ROC curve

represented by the setQ, call it fQ, we have that

Fn(fQ;d) =
√

2−min
q∈Q

{〈q− y,−N〉
‖−N‖

}
=
√

2−min
q∈Q

{
〈q,−n〉

}
,
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Figure 4.1: Geometry of calculating the ROC functional,F2, for a point (with vectorq)
on ROC curvefC.

with n the unit normal in the direction ofN, whenQ is not empty, and

Fn(fQ;d) = 0,

otherwise. The notation〈·, ·〉 is the scalar product. Figure 4.1 shows the geometry of the

ROC functional calculation where the number of classes isn = 2, and the given data is

(γ, α).

4.4 The Min-Max Threshold

Suppose we are given a ROCm-manifold withm = k2 − k. This can be viewed as

a set of class conditional probabilitym-vectorsA = {α(t) : t ∈ T} that form a continu-

ously differentiable, non-increasing function in ROCm-space. Let

Ac = {I−α(t) : α(t) ∈ A}, (4.54)

74



whereI is the appropriate identity vector. We associate with each of them errors a cost

ci, i = 1, 2, . . . ,m, so thatαi(t) corresponds toci. There are alsok prior probabilities,

pk, each prior havingk − 1 copies, so that we can enumerate them and allow eachαi(t)

to correspond topi, i = 1, 2, . . . ,m wherepi = pk for eachi and some particulark.

Let B = {e1, e2, . . . , em} be the standard basis for the linear spaceRm. Then putT =
m∑

i=1

ciei. Then for anyν ∈ Rm we have that

Tν = (c1ν1, c2ν2, . . . , cmνm)T (4.55)

Now a risk is a decision error times the cost of such an error, so that in our vernacular a

risk is ri = ciαi. Hence,Tα is a risk vector andT
(
A

)
is a risk set. Letai ∈ R such that

m∑
i=1

ai = 1. Let

R =

{
r ∈ Rm : r =

m∑
i=1

(
Tαj

)
ai,∀ αj ∈ A ∪Ac

}
.

ThenR is a convex risk set. LetP = {pi : i = 1, 2, . . . ,m}. P is a convex set. Now

consider also that

〈r,p〉 = 〈Tα,p〉 = 〈α, T∗p〉 = 〈α, Tp〉 (4.56)

showing thatT is a self-adjoint linear operator onRm. SinceRm is a reflexive, normed

space, andR,P are convex subsets ofRm andRm∗ respectively, we have by the Min-Max

theorem [31]

min
r∈R

[
max
p∈P

〈r,p〉
]

= max
p∈P

[
min
r∈R

〈r,p〉
]

(4.57)

and this occurs wherer andp are aligned, so that

〈r∗,p∗〉 = ‖r∗‖ ‖p∗‖ (4.58)
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for the uniquer∗ andp∗ which makes Equation 4.57 hold true. Now defineÃ = conv(A∪

Ac), so thenÃ is the convex hull of the ROC monifold and its “compliment”. Thus,

Ã = R. Furthermore, we have thatT
(
P

)
is a convex subset ofRm∗, andÃ ⊂ Rm.

Thus, the Min-Max theorem applies so that

min
α∈A

[
max

Tp∈T(P)
〈α, Tp〉

]
= max

Tp∈T(P)

[
min
α∈A

〈α, Tp〉
]

(4.59)

which only occurs whereα andTp are aligned

〈α∗∗, Tp∗∗〉 = ‖α∗∗‖ ‖Tp∗∗‖ . (4.60)

Therefore, we have that

min
r∈R

[
max
p∈P

〈r,p〉
]

= min
Tα∈T(A)

[
max
p∈P

〈Tα,p〉
]

(4.61)

= min
α∈Ã

[
max
p∈P

〈Tα,p〉
]

(4.62)

= min
α∈Ã

[
max
p∈P

〈α, Tp〉
]

(4.63)

= min
α∈Ã

[
max

Tp∈T(P)
〈α, Tp〉

]
(4.64)

= max
Tp∈T(P)

[
min
α∈Ã

〈α, Tp〉
]
. (4.65)

Hence,

‖r∗‖ ‖p∗‖ = ‖α∗∗‖ ‖Tp∗∗‖ (4.66)

= ‖α∗‖ ‖Tp∗‖ . (4.67)

So,

‖r∗‖ = k ‖α∗‖ , (4.68)

where

k =
‖Tp∗‖
‖p∗‖

. (4.69)

76



The point of this section is that the minimax point on the hull of the ROC manifold is now

shown to be the point with minimum̀2-norm. This point corresponds to the minimax

point of the convex risk set generated by the self-adjoint linear transformationT on the

ROC manifold. This leads to the conclusion that when a researcher is testing two or more

families of classification systems, if he has good knowledge of the prior probabilities, then

the ROC functional,Fk, is the preferred functional with which to establish which fusion

rules are fusors. On the other hand, if prior probabilities are not understood well, the

minimax threshold may be the threshold he would want to compare in order to establish

the partial ordering over the fusion rules (and for defining the fusors). In this case, the

researcher would want to compare values of the functional

Gk(Aj) = min
α∈Aj

‖α‖2 , (4.70)

for each family of classification systemsAj. There is one caveat to the solution here.

This is based on research in [42], where it is shown that if the solution to Equation 4.70 is

not on the ROC convex hull, then a random decision rule can be developed using the two

closest points which are on the convex hull, with this random decision rule being optimal

to the optimizing argument of the functionalGk(Aj). In other words, its2-norm would

be smaller then what the familyAj can produce.

4.4.1 Defining Fusors. We are now in a position to define a way in which we

can compete fusion rules. Suppose we have a fixed classification system such as that in

Figure 3.2. Each branch of the system (whether fixed, or associated with a fusion rule)

has a ROC manifold that can be associated with the family of classification systems, and

we now have a viable means of competing each branch. If we can only choose among

the two classification systems, take the one whose associated ROC functional is greater.

Therefore, we can also compete these two classification systems with a new system that

fuses the two data categories (or the feature or label categories for that matter) by fixing

a third family of classification systems, which is based on the fusion rule, and finding the
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ROC functional of the event-to-label system corresponding to the fused data (features). If

the fused branch’s ROC functional is greater than either of the original two, then the fusion

rule is a fusor. Repeating this process on a finite number of fusion rules, we discover a

finite collection of fusors with associated ROC functional values. Since the subcategory

of fusors is partially ordered, the best choice for a fusor is the fusor corresponding to the

largest ROC functional value. Do you want to change your a priori probabilities? Simply

adjustγ in the ROC functional’s data and recalculate the BOTs for each system. Then

calculate the ROC functional for each corresponding ROC and choose the largest value.

The corresponding fusor is then the best fusor to select under your criteria. Therefore,

given a finite collection of fusion rules, we have for fixed ROC functional data a partial

ordering of fusors.

0.4

0.6

0.2

0
0.40.20

Ptp

Pfp

1

0.8

0.8

0.6

Figure 4.2: ROC Curves of Two Competing Classification Systems.

Definition 30 (Fusor over ROC Manifolds). Let I ⊂ N be a finite subset of the natural

numbers, withmax I = n. Given{Ai}i∈I a finite collection of similar families of classi-

fication systems, letOπ(n)
0 be the category of fusion rules associated with the product ofn

data sets. LetFm be the ROC functional on the associated ROC manifolds of the families

of classification systems, both original and fused, wherem = k2 − k, with k being the
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number of classes of interest in the classification problem. Let
(
γ, α

)
be the established

data for the problem. Then given thatfAi is the ROC curve of theith family of classi-

fication systems, andfR the ROC curve of the classification familyAR, associated with

fusion ruleR ∈ Ob(Oπ(n)
0 ), we say that

Ai � Aj ⇐⇒ Fm(fAi) ≥ Fm(fAj) (4.71)

so that ifAR � Ai for all i ∈ I, thenR is called a fusor.

There is then a category of fusors, which is a subcategory ofOπ(n)
0 , and whose arrows

are induced by the ROC functional,ξ, such that given objectsR andS of this subcategory,

then there exists an arrow,R
&−→ S if and only if AR � AS if and only if pR ≥ pS. This

can be seen in the commutativity of the rectangle constructed from Equation 3.9,

R //

&
��

AR
F //

�

��

F(AR) = fAR

ξ //

g

��

ξ(fAR
) = pR

≥

��
S // AS

F // F(AS) = fAS

ξ // ξ(fAS
) = pS

where we can see that in order for the rectangle to commute, that& must be a partial order.

We are now in a position to define the fusion processes.

Definition 31 (Fusion-Rule Process).Given a fixed classification problem defined by the

categoryLE, a fusion-rule process is an element ofOb(LE).

We didn’t really whittle this down from the category of classification systems, because

a fusion rule could be the rule “choose classification system X”, which doesn’t necessarily

give a performance improvement. The next definition is the one of interest, since it defines

the fusion with the necessary addition of a qualitative element.

Definition 32 (Fusion Process).Given a fixed classification problem defined by the cate-

gory LE, and a natural transformation from this category to a category defined by a poset
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P = (X,≥), let FUSLE be the subcategory of classification systems induced by the par-

tial ordering. This category has as objects precisely those objects ofLE which have an

arrow pointing to every fixed branch. We then say a fusion process is an element of

Ob(FUSLE), and we can call this category the category of fusion processes.

We have now given a definition of the fusion process which contains everything nec-

essary. As an example, suppose we start with the system

D1
p1 // F1

aθ

��@
@@

@@
@@

E

s1

>>~~~~~~~~

s2

  @
@@

@@
@@

@ L

D2
p2 // F2

bφ
??~~~~~~~

with L a k-class label set. LetAθ = aθ ◦ p1 ◦ s1 andBφ = bφ ◦ p2 ◦ s2, and consider a

functionalFk on the ROC curvesfA andfB whereA andB are defined as families of the

respective classification systems shown (Fk being created under the assumptions and data

of the researcher’s choice). Then, given fusion rulesS, such as that in Figure 4.3, andT

and a second fusion system

D1

E

s1
??~~~~~~~~

s2 ��@
@@

@@
@@

@
<s1,s2> // D1 ×D2

T //

q1

ddIIIIIIIII

q2
zzuuuuuuuuu

D3
p3 // F3

dκ // L

D2

let fS andfT refer to the corresponding ROC curves to each of the fusion rule’s systems

(as a possible example of ROC curves of competing fusion rules see Figure 4.2 ). Then

we have that ifFk(fS) ≥ Fk(fA) andFk(fS) ≥ Fk(fB) and similarly, ifFk(fT) ≥ Fk(fA)

andFk(fT) ≥ Fk(fB) then we say thatS, T are fusors. Furthermore, supposeFk(fS) ≥

Fk(fT). Then we have thatS � T. Thus,S is the fusor a researcher would select
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under the given assumptions and data. Figure 4.3 is a diagram showing all branches and

products (along with the associated projectors) in category theory notation.

E

<s1,s2>

��

s1

||xx
xx

xx
xx

xx
xx

xx
xx

xx
x

s2

""F
FF

FF
FF

FF
FF

FF
FF

FF
FF

D1

p1

��

D1 ×D2
q1oo q2 //

S
��

D2

p2

��

D0

p

��
F1

aθ
((QQQQQQQQQQQQQQQQ F0

cψ

��

F2

bφ
vvmmmmmmmmmmmmmmmm

L

Figure 4.3: Data Fusion of Two Classification Systems.

4.4.2 Fusing Across Different Label Sets.Up to this point, we have considered

fusing only those branches of our fixed classification category. This category had a fixed

event set and a fixed label set. Sometimes researchers have reason to fuse classification

systems which classify events into different label sets before fusion takes place. For

example, consider the classification of a mammogram by two classification systems,A1

andA2. The first system detects microcalcifications in the breast and returns a result of

cancer or non-cancer. The second system detects irregular masses and returns a result of

cancer or non-cancer. While the label sets look the same (in fact, bijective), they are not

equal. The first partitions the event set into two sets, one where microcalcifications are

present and one where they are not. Obviously, irregular masses can occur in either set, so

that the cancer label of systemA1 does not correspond with the cancer set of systemA2.

We would still like to fuse the results, but now we must consider carefully what should

the label set be? It would be prudent to put the label set again as cancer and non-cancer,
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which is isomorphic to both the original label sets. The new label set could still be cancer

or no cancer, however, these labels induce a new partition of the event space since we now

consider cancerous results to be those where microcalcificationsor irregular masses are

returned by the systems. This leads to two definitions developed by Drs. Oxley, Bauer,

Schubert, and myself [46].

Definition 33 (Consistent Functor Category of Classification Systems).A functor cat-

egory of classification systems,L E, is called consistent when there exists:

1. a probability space(E, E , µ),

2. a finite label setL = {`1, `2, ..., `M},

3. a classification systemτ ∈ L E,

such that the set of sets

EL =
{
τ \({`i}) : `i ∈ L , i = 1, 2, . . . ,M

}
⊂ E

forms a partition ofE. That is, forτ \(`i) = Ei we have that
M⋃
i=1

Ei = E andEi ∩ Ej = ∅

for all i 6= j. In practice, the classification systemτ referred to above, in a consistent,

fixed classification system is called the “truth” classifier.

It should be clear from the definition above that

P(τ \({`i})|Ei) = 1. (4.72)

Definition 34 (Within-Fusion Rule). Let S be a fixed classification system with N fixed

branches. Assume the following:

• (E, E , µ) is a probability space;

• L = {`1, `2, ..., `M} is a finite label set;

• L E is consistent;
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• EL = {E`1 , E`2 , ..., E`M} ⊂ E is the partition ofE with respect toL and truth

classifierτ ;

Let AR represent the branch generated by fusion ruleR. If for eachm = 1, 2, ...,M , the

fixed branchesA1, A2, ..., AN : E → L are designed to mapE`m to `m, then the fusion

rule R is said to be awithin-fusion rule.Furthermore,AR : E → L is designed to map

Em to `m for eachm = 1, 2, ...,M .

Definition 35 (Across-Fusion Rule).Let S be a fixed classification system with N fixed

branches. Assume the following:

• (E, E , µ) is a probability space;

• L = {`1, `2, ..., `M} is a finite label set, andL is the power set ofL so that(L ,L)

is a measurable space;

• L E is consistent;

• EL = {E`1 , E`2 , ..., E`M} ⊂ E is a partition ofE with respect toL and truth

classifierτ ;

• L (0), L (1), . . . , L (N) ⊂ L are (possibly different) partitions ofL , which allow

for their functor categories to be consistent, each under a different truth classifier,

sayτn for n = 0, 1, . . . , N ;

• for eachn = 0, 1, . . . , N , let M (n) = card(L (n)) ≤ M , andL (n) correspond to

the label setL(n) = {ω(n)
1 , ω

(n)
2 , . . . , ω

(n)

M(n)} in a one-to-one fashion;

• for eachn = 0, 1, . . . , N , E (n) ⊂ E is the partition ofE with respect toL (n) (and

L(n) ) and truth classifierτn;

If the families of classification systems,

A1 : E → L(1), A2 : E → L(2), . . . , AN : E → L(N),

are designed to map each partition set ofE (n) to the correspondingω(n)
j ∈ L(n) for every

n = 1, 2, . . . , N , andj ≤ M (n), then the fusion ruleR that combines the collection of
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such systems (yielding a new family of classification systems),

A0 = R(A1, A2, ..., AN),

is said to be anacross-fusion rule.Furthermore,A0 : E → L(0) is designed to map

partition sets inE (0) to the correspondingω(0)
j ∈ L(0), for j ≤ M (0).

The diagram of across-fusion, whereAR represents the branch which is essentially a

fused branch, is shown in Figure 4.4. If the partitions are equal among the families of

L(1) //L (1) //L (0)

""F
FFFFFFF

E

A1

>>}}}}}}}}

A2

  A
AA

AA
AA

A
AR // L(0)

L(2) //L (2) //L (0)

<<xxxxxxxx

Figure 4.4: Example of Across-Fusion.

classification systems and if the partitions are each injective toL , that is,

L (1) = L (2) = . . . = L (N) = {{`1} , {`2} , ..., {`M}}

so that

L(1) = L(2) = . . . = L(N) = {`1, `2, ..., `M} = L ,

then there is no need to consider other partitions ofL , since clearly

L(0) = {ω(0)
1 , . . . , ω

(0)
M } = {`1, . . . , `M} = L ,

whereω
(0)
j = `j for all j = 1, . . . ,M . Therefore, within-fusion is a special case of

across-fusion.
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4.5 Changing Assumptions, Robustness, and Example

While we have suggested a family of functionals to use as a way of competing clas-

sification systems and fusors, this family is not the only choice available. Furthermore,

one may desire to average functionals or transform them into new functionals. In many

ways, the functional we have presented is general. We have shown its relationship to the

Bayes optimal and Neyman-Pearson points on a ROC curve. It can also be shown to be

related to Adam’s and Hand’s development of a loss comparison functional. In [3], the

loss comparison of a classification system (LC) is denoted by

LC =

∫
I(c1)L(c1)dc1, (4.73)

where, although a slight abuse of notation, we haveI as an indicator function of whether

or not the classification system is still minimal under costc1, andc1 is the cost of one type

of error whilec0 is the cost of the other.L(c1) is a belief function which linearly weights

how far c1 is from the believed true cost of the error (or ratioc0
c1

). This functional,LC,

can be reformulated as follows:

Given competing classification systemsR = {Ai}k
i=1 for k ∈ N fixed, fix

α = (α1, α2) andγ = (γ1, γ2). Let Γ be the set of all possibleγ. Define a
setHγ by

Hγ =
{
Aj ∈ R

∣∣ F2(fAj ; γ, α) ≥ F2(fAi ; γ, α),∀ i 6= j, i = 1, 2, . . . , k
}
.

Then, forAi we have that

LC(Ai) =

∫
Γ

IHγ (Ai)W (γ)dγ (4.74)

whereW (γ) is the weight given to suppositionγ (a belief function in this
case). ThusLC scores the classification families, and induces an ordering on
R.

One more suggested use ofFn would be to apply the belief function in a simpler way,

and averageFn over the believed trueγ and the believed extreme values of the setΓ, so
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that

Sn(fA) =
1

2n + 1
(

2n∑
i=1

Fn(fA; γi, α) + Fn(fA; γ0, α)), (4.75)

whereγi are the believed extreme values of the setΓ, andγ0 is the most believable

(or probable under some instances) cost-prior product. In [3], the prior probabilities

are assumed to be fixed, but they can be varied according to belief as well (although

developing the belief functions will prove challenging).

As an example, consider the plot of two competing families of classification systems

in Figure 4.5. Since we collected only finite data, the ROC ‘curves’ are actually a finite

collection of ROC points. While our theory develops out of smooth manifolds, never-

theless, we can still calculate the functionals we require, since they operate on individual

points on the ROC manifolds. The two curves in question cross more than once, and this

is typical of many ROC curves, so deciding which family of classification systems is best

really boils down to which classification system is best. Suppose our belief of the situa-

tion we are trying to classify is that the ratio of prior probabilitiesµ{`1}
µ{`2} is 1

2
, with with a

range of ratios from1
3

to 1. Furthermore, our experts believe the most likely cost ratio is
C2|1
C1|2

= 1, with a range from1
2

to 2. Therefore, our prior-cost ratio is most likely1
2
, with

a range from1
6

to 2. We will refer to the two ROC curves asfC1 andfC2. Hence, the

two classification systems shown in the figure yield scores ofF2(fC1) = F2(fC2) = 1.137,

indicating that the best classification systems in each family are equivalent with regard

to the most believable prior-cost ratio. However,S2(fC1) = 0.336 ≥ 0.330 = S2(fC2),

indicating a preference of the best choice fromfC1 once belief regarding the range of the

prior-cost ratio is taken into account. If our beliefs are actual probabilities from recorded

data, the results are even stronger for selectingfC1 as the best classification system.

There are, of course, other suggestions for performance functionals regarding com-

peting fusion rules. Consider fusion rules as algorithms, divorcing them from the entire

classification system. Mahler [33] recommends using mathematical information MoEs

(measures of effectiveness) with respect to comparing performance of fusion algorithms

(fusion rules). In particular, he refers to level1 fusion MoEs as being traditionally ‘local-
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Figure 4.5: ROC Curves of Two Competing Classifier Systems.

ized’ in their competence. His preferred approach is to use an information ‘metric’, the

Kullback-Leibler Discrimination functional,

K(fG, f) =

∫
X

fG(x) log2

(fG(x)

f(x)

)
dx,

wherefG is a probability distribution of perfect or near perfect ground truth,f is a prob-

ability distribution associated with the fused output of the algorithm and,X is the set of

all possible measurements of the observation. This works fine, if such distributions are

at hand. One drawback is that it measures the expected value of uncertainty and there-

fore its relationship to costs and prior probabilities is obscure (as was the case with the

Neyman-Pearson criteria). The previous functionals we have forwarded for considera-

tion operate on families of classification systems (in particular, ROC manifolds), not just

systems which enjoy well-developed and tested probability distribution functions.
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V. Conclusions

A fusion researcher should have a viable method of competing fusion rules. This is re-

quired to correctly define fusion, and to demonstrate improvements over existing methods.

We have shown in this dissertation every fusion system over a finite number of fundamen-

tal classification system branches can generate, under test conditions, a corresponding

ROC manifold, and under a mild assumption of smoothness of the ROC manifold, a Bayes

Optimal Threshold (BOT) can be found for each family of classification systems. Given

additional assumptions on the a priori probabilities of a target or non-target, along with

given thresholds for the conditional class probabilities, a functional can be generated for

each ROC manifold. Any such functional will generate a partial ordering on families of

classification systems, on categories of fusion rules, and ultimately on categories of fusors,

which can then be used to select the best fusor from among a finite collection of fusors.

We demonstrate one such functional, the ROC functional, which is scalable to ROC mani-

folds of dimensions higher than 1, as well as to families of classification systems which do

not generate ROC manifolds at all. The ROC functional, when populated with the appro-

priate data choices, will yield a value corresponding the the Bayes Optimal threshold with

respect to the classification system family being examined. Another data choice yields

the Bayes Cost Threshold, and we have also shown that the Neyman-Pearson threshold of

a classification system corresponds to the output of the ROC functional with another fixed

data choice (so that it will correspond with the Bayes Optimal Threshold under one partic-

ular set of assumptions). Ultimately, a researcher could choose a cost-prior ratio (which

seems most reasonable) perturbate it, calculate the mean ROC Functional value, and then

choose the classification system with the greatest average ROC Functional value. This

value would be a relative comparison of how robust that classification system is to changes

(e.g., it would answer the question, “how much change is endured before another classifi-

cation system is optimal?”) compared with other classification systems. The relationship

of the ROC functional to other functionals, including the loss comparison functional, is

demonstrated. Finally, there are other functionals to choose, one which we mentioned,
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the Kullback-Leibler discrimination functional, may be unrelated to the ROC functional,

yet may be suitable in particular circumstances where prior probabilities and costs are not

fathomable, but probability distributions for fusion system algorithms and ground truth

are available.

5.1 Significant Contributions

We believe that significant contributions have been made in this dissertation to the

body of knowledge referred to as data or information fusion. The contributions of new

and extended applied mathematics were made in the following presentations:

• Rigorous Mathematical descriptions of:

1. classification systems;

2. ROC curves, manifolds, spaces.

• Extended and corrected Alsing’s ROC convergence theorem [4]. Convergence is

shown to occur almost surely as countably infinite random samples are taken from

test sample spaces, the sets of which are nested and converging to a true setΩ.

The data does not need to be balanced between the classes as assumed by Alsing.

We relied upon the writings of Doob [9], Billingsley [5], and Kolmogorov [28]

to carefully follow the subtle differences between actual experimental data and its

connection to the theory of probability.

• Developed a ROC functional,Fn, which is scalable and can be used without restric-

tions of continuity, differentiability, convexity, etc., which were necessary to the

theory of finding the optimal points on ROC manifolds.

1. Demonstrated its relation to Bayes Optimal thresholds and Neyman-Pearson

thresholds.

2. Constructed a more robust functional from the ROC functional which may be

even more useful than the ROC functional.
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• Proved the Min-Max functional is a minimum two norm problem, and can be used

without restrictions of continuity, differentiability, convexity, etc., which were nec-

essary to the theory of finding the optimal points on ROC manifolds.

• Demonstrated the pitfalls associated with comparing fusors with fixed branches

when doing across fusion, since the label partitions would be different for each

classifier family

• Developed a calculus of variations solution to finding optimal elements of ROC

manifolds under prior probability and cost constraints for finite classes. This is an

extension of known optimizations with two-class problems, which used differential

calculus, and is a novel approach which led to discovering a functional that works

without the constraints of classifier system families having certain well-behaved

properties.

• Developed the Algebra/Category Theory of the fusion of classification systems, in-

cluding how functors, such as the ROC functional and minimum norm functional,

are natural transformations from the categories of fusion rules, and fusors to a par-

tially ordered set. Partial orders arise naturally with an objective function, thereby

allowing definitions of fusors to be constructed, as well as defining categories of

fusion rules and fusors. This description of data fusion meets the desires of the data

fusion communitee as cited in [54].

5.1.1 Recommendations for Follow-on Research. The work described in this

dissertation should be supplemented with the following ideas, which make for future re-

search:

• Find universals in the category of fusors. We suspect that the truth fusor and false

fusor along with the arrow induced by the partial order may be universal in some

way;
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• Allow the categories to propagate arrows, such as an arrow representing time in

the event-state category. In this way, stochastic processes may be modeled and

explained better;

• There is a need to define what situation/threat refinements are in order to apply this

fusion process foundation to the elevated levels of data fusion, as described in the

JDL functional model;

• Fnd the common theory behind functionals, such as the ROC functional, and the

information measures of effectiveness, such as the Liebler-Kullback cross entropy.

Also needed is the full relationship between the ROC functional and the AUC;

• The robustness of the classification systems which are minimum with respect to an

objective function needs to be explored further, as well as, examining the possibility

that costs are not fixed constants, but rather they are functions of the error axes

themselves. Then what is the minimizing argument? Is there a way to find this

point on the ROC manifold?

• Develop and seek out applications for which our theory explains and describes the

process. Our desire is to build up the examples in order to make the explanations

more useful and relevant to those not versed in category theory, but for whom this

research would be beneficial.

This short list is not comprehensive, but gives a few good topics both within category

theory and linear operator theory to expand the state of our current knowledge.
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